簡易檢索 / 詳目顯示

研究生: 蘇冠豪
Su, Guan-Hao
論文名稱: 高頻表面聲波元件的模態耦合理論分析與實驗量測
Coupling of Mode Analysis and Experimental Measurement of High Frequency Surface Acoustic Wave Devices
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 176
中文關鍵詞: 表面聲波元件指叉狀電極模態耦合理論單埠表面聲波諧振器
外文關鍵詞: SAW devices, IDT, COM analysis, one-port SAW resonator
相關次數: 點閱:98下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文使用奈米壓印製程製作表面聲波元件,量測其頻率響應;並且以模態耦合理論分析換能器的波傳激振效應。
    模態耦合理論的方便性與其廣泛的適用性相當適合用來分析反射柵或是指叉狀電極換能器;因此本文採用此理論模型,並將其表示成三埠矩陣的型式,分析壓電材料表面之均勻結構換能器的表面波傳及共振行為。分析時假設壓電材料表面為準靜態半無限域。
    元件實作及實驗量測方面,使用接觸式金屬轉印製程在Y128X-cut鈮酸鋰商用基板上製作最小電極寬度為0.5μm的單埠表面聲波諧振器,並以網路分析儀及高頻探針量測其頻率響應。量測得到的最高共振頻率約在1.95GHz。
    比較量測訊號與理論分析的結果,討論材料性質與設計參數對元件頻率響應的影響,作為往後設計元件的參考依據。

    This thesis investigates surface acoustic wave (SAW) devices fabricated by nanoimprinting process, and simulates its wave excitation effect by coupling of mode analysis.
    Coupling of mode (COM) analysis for analyzing reflective gratings and transducers has become very widespread because of its relative simplicity and wide applicability. Therefore, the simulation of uniform structure transducer on the surface of piezoelectric material in this thesis is based on COM analysis, which is expressed as a three-port matrix. It is assumed that surface of piezoelectric material is quasi-static half space.
    On the part of device fabrication and experimental measurement, fabricated one-port SAW resonator on the Y128X-cut Lithium niobate substrate with contact-transfer and mask-embedded lithography (CMEL). The minimum electrode width of devices is 0.5μm. Frequency response of device is measured by network analyzer and microwave probe. The highest resonant frequency is about 1.95GHz.
    Compare the results of experimental measurement and theoretical analysis, discuss how material properties and design parameters affected frequency response of device. The parameters of device design is base on the conclusion of analysis.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XII 符號說明 XIII 第一章 導論 1 1-1 研究背景與目的 1 1-2 文獻回顧 2 1-3 本文架構 4 第二章 波傳理論與表面電性激振效應 5 2-1 波傳理論 5 2-1.1 非等向性材料 6 2-1.2 壓電材料 9 2-1.3 壓電材料的表面波傳行為 11 2-2 半無限域表面的電性激振效應 15 2-2.1 靜電場效應 16 2-2.2 壓電場效應 20 2-2.3 有效介電係數的性質 22 2-2.4 表面波激振效應與格林函數 30 第三章 換能器與反射柵分析 36 3-1 無反射換能器分析 37 3-1.1 一般電極陣列準靜態分析 38 3-1.2 準靜態換能器分析 42 3-1.3 規則電極陣列分析 47 3-2 反射陣列理論分析反射柵與換能器 55 3-2.1 無限長反射柵分析 55 3-2.2 有限長反射柵分析 60 3-2.3 反射係數與實際波速 62 3-3 模態耦合理論分析 67 3-3.1 模態耦合方程式 68 3-3.2均勻換能器分析 77 3-3.3阻帶邊緣頻率與模態耦合理論參數 83 第四章 表面聲波元件理論計算 90 4-1 反射柵與共振腔 90 4-2 單埠表面聲波諧振器 94 4-3 雙埠表面聲波諧振器 100 第五章 元件實作與實驗量測 105 5-1 元件設計參數 106 5-2 元件製作 107 5-3 元件量測 111 5-3.1 儀器架構 111 5-3.2 量測方法 112 第六章 量測結果與模擬分析 115 6-1 量測結果與模擬結果比較 115 6-2 理論計算模態耦合理論參數 127 第七章 結論與未來展望 134 7-1 結論 134 7-2 未來展望 136 附錄A 138 A-1 矩陣符號表示式 138 A-2 分波理論表示式 138 A-2.1 非等向性材料 139 A-2.2 壓電材料 140 A-3 材料參數 142 A-3.1 材料方向定義:尤拉角 142 A-3.2 材料參數 143 附錄B 146 B-1 材料的互易關係 146 B-1.1 壓電材料性質的互易性 146 B-1.2 格林函數的對稱性 147 B-2 Legendre函數性質 149 附錄C 151 C-1 P矩陣定義 151 C-2 P矩陣公式推導 153 C-2.1 改變聲學埠位置 153 C-2.2 矩陣串聯 156 C-2.3 雙埠元件的導納矩陣 160 C-2.4 散射矩陣 162 C-2.5 相同換能器串聯分析 164 C-3 COM方程式P矩陣內元素表示式 169 參考文獻 173

    [1] L. Rayleigh, “On Waves Propagating along the Plane Surface of an Elastic Solid,” Pro. London Math. Soc., 7, pp. 4-11, 1885.
    [2] R.M. White and F.W. Voltmer, “Direct Piezoelectric Coupling to Surface Elastic Waves,” Appl. Phys. Lett., 17, pp. 314-316, 1965.
    [3] W.P. Mason, Electromechanical Transducers and Wave Filters, van Nostrand Company, 2nd Edition, 1948.
    [4] W.R. Smith, H.M. Gerard, J.H. Collins, T.M. Reeder and H.J. Show, “Analysis of Interdigital Surface Wave Transducers by Use of an Equivalent Circuit Model,” IEEE Trans. on Microwave Theory and Techniques, MTT-17, pp. 856-864, 1969.
    [5] R.H. Tancrell and M.G. Holland, “Acoustic Surface Wave Filters,” Proc. IEEE, 59, pp. 393-409, 1971.
    [6] C.S. Hartmann, D.T. Bell, Jr. and R.C. Rosenfeld, “Impulse response model design of acoustic surface-wave filters,” IEEE Trans. on Microwave Theory and Techniques, MTT-21, pp. 162-175, 1973.
    [7] J.R. Pierce, “Coupling-of-modes of propagation,” J. Appl. Phys., 25, pp. 179-183, 1954.
    [8] P.S. Cross and R.V. Schmidt, “Coupled Surface-Acoustic-Wave Resonators,” Bell System Tech. Journal, 56, pp. 1447-1482, 1977.
    [9] H.A. Haus, “Modes in SAW grating resonators,” J. Appl. Phys., 48, pp. 4955-4961, 1977.
    [10] C.S. Hartmann, P.V. Wright, R.J. Kansy and E.M. Garber, “An analysis of SAW interdigital transducers with internal reflections and the application to the design of single-phase unidirectional transducers,” Proc. IEEE Ultrasonics Symp., pp. 29-34, 1982.
    [11] D.P. Chen and H.A. Haus, “Analysis of Metal-Strip SAW Gratings and Transducers,” IEEE Trans. on Sonics and Ultrason., SU-26, pp. 395-408, 1985.
    [12] G.W. Farnell. “Properties of elastic surface waves,” Physical Acoustics, 6 , pp. 109–166, 1970.
    [13] G.W. Farnell. “Elastic surface waves,” in H. Matthews (1st ed.), Surface Wave Filters, Wiley, pp. 1–53, 1977.
    [14] B.A. Auld. “Acoustic Fields and Waves in Solids,” Vol. I & II, Krieger, 1990.
    [15] R.C. Peach. “A general approach to the electrostatic problem of the SAW interdigital transducer,” IEEE Trans., SU-28, pp. 96–105, 1981.
    [16] R.F. Milsom, N.H.C. Reilly and M. Redwood. “Analysis of generation and detection of surface and bulk acoustic waves by interdigital transducers,” IEEE Trans., SU-24, pp. 147–166, 1977.
    [17] R.F. Milsom, M. Redwood and N.H.C. Reilly. “The interdigital transducer,” in H. Matthews (1st ed.), Surface Wave Filters,Wiley, pp. 55–108, 1977.
    [18] C.A.A.J. Greebe, P.A. van Dalen, T.J.N. Swanenberg and J. Wolter. “Electric coupling properties of acoustic and electric surface waves,” Phys. Rep. Phys. Lett. C, 1C, pp.235–268, 1971.
    [19] K.-Y. Hashimoto and M. Yamaguchi. “Excitation and propagation of shear-horizontal-type surface and bulk acoustic waves,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 48, pp.1181–1188. 2001.
    [20] K.A. Ingebrigtsen. “Surface waves in piezoelectrics,” J. Appl. Phys., 40, pp. 2681–2686, 1969.
    [21] K. Bløtekjaer, K.A. Ingebrigtsen and H. Skeie. “A method for analysing waves in structures consisting of metal strips on dispersive media,” IEEE Trans., ED-20, pp. 1133–1138, 1973.
    [22] D.P. Morgan. “Quasi-static analysis of generalised SAW transducers using the Green’s function method,” IEEE Trans., SU-27, pp. 111–123, 1980.
    [23] G.Tobolka. “Mixed matrix representation of SAW transducers,” IEEETrans., SU-26, pp. 426–428. 1979.
    [24] S. Datta and B.J. Hunsinger. “Element factor for periodic transducers,” IEEE Trans., SU-27, pp. 42–44, 1980.
    [25] H. Engan. “Surface acousticwave multi-electrode transducers,” IEEE Trans., SU-22, pp. 395–401, 1975.
    [26] D.P. Morgan. “Reflective array modelling for reflective and directional SAW transducers,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 45, pp. 152–157, 1998.
    [27] S. Datta and B.J. Hunsinger. “An analytical theory for the scattering of SAW by a single electrode in a periodic array on a piezoelectric substrate,” J. Appl. Phys., 51, pp. 4817–4823, 1980.
    [28] S. Datta and B.J. Hunsinger. “First-order reflection coefficient of SAW from thin-strip overlays,” J. Appl. Phys., 50, pp. 5661–5665, 1979.
    [29] S. Datta. Surface Acoustic Wave Devices, Prentice-Hall, 1986.
    [30] H.A. Haus and W. Huang. “Coupled-mode theory,” Proc. IEEE, 79, pp. 1505–1518, 1991.
    [31] E.A. Ash. “Surface wave grating reflectors and resonators,” IEEE MTT Symp., pp. 385–386, 1970.
    [32] R.A. Chipman, Transmission Line, Schaum's Outline, McGraw-Hill, New York, 1968.
    [33] Y.C. Lee and C.Y. Chiu, “A micro-/nano-lithography based on contact transfer of thin film and mask embedded etching,” J. Micromech. Microeng. 18(7), pp. 075013~075019, June 2008.
    [34] A.J. Slobodnik. “Materials and their influence on performanc,” in A.A. Oliner (ed.), Acoustic Surface Waves, Springer, pp. 226–303, 1978.
    [35] A. Erdelyi. Higher Transcendental Functions, McGraw-Hill, 1953.
    [36] D.P.Morgan. “Cascading formulas for identical transducerP-matrices,” IEEETrans. Ultrason. Ferroelect. Freq. Contr., 43, pp. 985–987, 1996.

    下載圖示 校內:2016-08-31公開
    校外:2016-08-31公開
    QR CODE