| 研究生: |
陳翌宜 Chen, Yi-Yi |
|---|---|
| 論文名稱: |
台灣電動車鋰電池回收潛力之預測:應用Weibull分佈與物質流分析 Forecasting the Recycling Potential of Lithium-Ion Batteries from Electric Vehicles in Taiwan: An Application of Weibull Distribution and Material Flow Analysis |
| 指導教授: |
黃韻勳
Huang, Yun-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 電動汽車 、鋰電池回收 、可靠度 、Weibull 、情境分析 、MFA |
| 外文關鍵詞: | Electric Vehicles, Lithium-ion Batteries, Weibull Distribution, Material Flow Analysis, Metal Recovery |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在全球氣候變遷與資源壓力日益加劇的背景下,電動車作為低碳轉型的重要策略, 其快速普及亦引發大量車用鋰離子電池(Lithium-ion Batteries, LIBs)退役的挑戰。車用鋰 電池中含鋰、鎳、鈷、錳等關鍵金屬,如未妥善回收可能造成環境污染、資源浪費及供 應風險。因此,建立預測模型以評估退役鋰電池回收潛力與再利用價值,對於台灣未來 資源管理與回收體系建構具重要性。本研究建構一套整合性之預測架構,首先依據政策 推動力道設計高、中、低三種市場滲透情境,並以 S 型成長曲線(S-curve)預測台灣 2025 至 2040 年間純電池電動車(BEV)與插電式油電混合車(PHEV)之成長趨勢。進一步結合 Weibull 壽命分佈模型,交叉組合形成九種模擬情境,模擬車用鋰電池之退役機率以估 算各年度退役量。最終,透過物質流分析(Material Flow Analysis, MFA),量化鋰、鎳、 鈷與錳等關鍵金屬之回收量與需求量,並進一步估算回收供應率與金屬回收產值。
研究結果顯示,隨著電動車銷量逐年攀升,退役鋰電池數量亦呈現顯著成長趨勢。 鋰電池之回收潛力深受電動車市場發展速度、電池平均壽命及二次使用比例等因素所影 響。以 2040 年基準情境為例,鋰、鎳、鈷與錳等四種關鍵金屬的回收潛力分別為 708.61 公噸、 2,405.92 公噸、288.71 公噸與 282.29 公噸,其中以鋰與鎳為主要回收金 屬。然而,各金屬回收供應率皆未突破60%,顯示回收資源仍難以完全滿足電池所需金 屬之總量。綜合而言,提升回收效率與延長電池壽命不僅有助於增加可利用資源,亦能 有效分散退役高峰、穩定資源供應節奏,進而降低對進口金屬的依賴程度。
在經濟層面,隨著退役電池數量逐年攀升,鋰電池中金屬資源之回收產值亦呈持續 上升趨勢。以 2040 年基準情境為例,四種關鍵金屬之回收總產值可達新台幣 15.87 億 元,其中鎳與鋰分別占整體回收價值約八成,為主要貢獻來源。惟需注意的是,回收量 與回收供應率間並無線性對應關係,產值雖具規模,若忽略資源之二次使用潛力,將可 能低估其整體效益;因此,未來評估鋰電池再利用價值時,應整合回收產值與金屬供需 比例,以全面掌握其資源化效益與實質貢獻。
Growing concern about climate change and dwindling resources have accelerated the adoption of electric vehicles (EVs). However, a rapidly expanding EV market will generate an enormous number of lithium-ion batteries (LIBs) as they reach the end of their service life. It is essential that the metals they contain, such as lithium, nickel, cobalt, and manganese be properly recovered to prevent environmental damage and alleviate market demand for these materials.
This study employed S-curve models to forecast EV growth in Taiwan from 2025 to 2040, in conjunction with Weibull lifetime distributions to estimate battery retirement. Nine simulation scenarios were run using various combinations of EV market growth, battery lifespans, and second-use rates. Material flow analysis (MFA) was then used to estimate the future recovery potential, demand for metal, recovery supply rates, and the economic value of recovered materials.
Our findings indicate that there will be enormous increase in the number of retired batteries, enabling the recovery of 709 metric tons of lithium, 2,406 tons of nickel, 289 tons of cobalt, and 282 tons of manganese by 2040 (under the baseline Scenario). Although recovery supply rates are expected to remain below 60 % for all metals, the recovery value could be as high as NT$1.587 billion, primarily from nickel and lithium. Our findings underscore the importance of expanding domestic recycling capacity, improving recovery technologies, and promoting second use strategies to reduce reliance on imported materials and achieve circular resource use.
一、英文文獻
1.Abdelbaky, M., Peeters, J. R., Duflou, J. R., & Dewulf, W. (2020). Forecasting the EU recycling potential for batteries from electric vehicles. Procedia CIRP, 90, 432-436.
2.Battery University. (2023). BU-205: Types of lithium-ion. Battery University.
3.California Air Resources Board. (2022). Final regulation order: Amendments to section 1962.2, title 13, California Code of Regulations. Sacramento, CA: California Environmental Protection Agency.
4.Cavalcante, I., Rodrigues da Silva, A., Zajc, M., Mendek, I., Calearo, L., Malkova, A., ... & Morais, H. (2024). Dataset on Electric Road Mobility: Historical and Evolution Scenarios until 2050. Scientific data, 11(1), 1019.
5.Chen, X., Shen, W., Vo, T. T., Cao, Z., & Kapoor, A. (2012, December). An overview of lithium-Ion batteries for electric vehicles. In 2012 10th International Power & Energy Conference (IPEC) (pp. 230-235). IEEE.
6.He, L., & Sun, B. (2022). Exploring the EPR system for power battery recycling from a supply-side perspective: An evolutionary game analysis. Waste Management, 140, 204-212.
7.Huang, J., Dong, X., Chen, J., & Zeng, A. (2023). The slow-release effect of recycling on rapid demand growth of critical metals from EV batteries up to 2050: Evidence from China. Resources Policy, 82, 103504.
8.IEA(2024).Global EV Outlook 2024.
9.IEA(2025).Global EV Outlook 2025.
10.Jiang, R., Wu, C., Feng, W., You, K., Liu, J., Zhou, G., & Cheng, H. M. (2025). Impact of electric vehicle battery recycling on reducing raw material demand and battery life-cycle carbon emissions in China. Scientific Reports, 15(1), 2267.
11.Liu, B., & Liu, X. (2024). Prediction of metal recovery potential of end-of-life NEV batteries in China based on GRA-BiLSTM. Waste Management, 190, 339-349.
12.Meegoda, J. N., Malladi, S., & Zayas, I. C. (2022). End-of-life management of electric vehicle lithium-ion batteries in the United States. Clean Technologies, 4(4), 1162-1174.
13.Miao, Y., Hynan, P., Von Jouanne, A., & Yokochi, A. (2019). Current Li-ion battery technologies in electric vehicles and opportunities for advancements. Energies, 12(6), 1074.
14.Rogers, E. M. (1983). Diffusion of innovations (3rd ed.). New York: Free Press.
15.Shafique, M., Rafiq, M., Azam, A., & Luo, X. (2022). Material flow analysis for end-of-life lithium-ion batteries from battery electric vehicles in the USA and China. Resources, Conservation and Recycling, 178, 106061.
16.Shafique, M., Akbar, A., Rafiq, M., Azam, A., & Luo, X. (2023). Global material flow analysis of end-of-life of lithium nickel manganese cobalt oxide batteries from battery electric vehicles. Waste Management & Research, 41(2), 376-388.
17.Singh, S., Saket, R. K., & Khan, B. (2023). A comprehensive state‐of‐the‐art review on reliability assessment and charging methodologies of grid‐integrated electric vehicles. IET Electrical systems in Transportation, 13(1), e12073.
18.Su, D., Mei, Y., Liu, T., & Amine, K. (2025). Global Regulations for Sustainable Battery Recycling: Challenges and Opportunities. Sustainability (2071-1050), 17(7).
19.Wu, Y., Yang, L., Tian, X., Li, Y., & Zuo, T. (2020). Temporal and spatial analysis for end-of-life power batteries from electric vehicles in China. Resources, Conservation and Recycling, 155, 104651.
20.Xu, C., Dai, Q., Gaines, L., Hu, M., Tukker, A., & Steubing, B. (2020). Future material demand for automotive lithium-based batteries. Communications Materials, 1(1), 99.
21.Zanoletti, A., Carena, E., Ferrara, C., & Bontempi, E. (2024). A review of lithium-ion battery recycling: technologies, sustainability, and open issues. Batteries, 10(1), 38.
22.Zong, Y., Yao, P., Zhang, X., Wang, J., Song, X., Zhao, J., Wang, Z. & Zheng, Y. (2023). Material flow analysis on the critical resources from spent power lithium-ion batteries under the framework of China's recycling policies. Waste Management, 171, 463-472.
23.Ziemann, S., Müller, D. B., Schebek, L., & Weil, M. (2018). Modeling the potential impact of lithium recycling from EV batteries on lithium demand: A dynamic MFA approach. Resources, conservation and recycling, 133, 76-85.
二、中文文獻
1.王姿惠 (2025),鋰電池廢棄回收階段之生命週期評估與回收處理廠選址問題,逢甲大學工業工程與系統管理學系碩士論文。
2.行政院 (2023),台灣2050淨零轉型十二項關鍵戰略。
3.李庭萱 (2019),以濕法冶金原理回收廢鋰電池中有價金屬之研究,國立成功大學資源工程學系碩士論文。
4.張御萱 (2018),台灣太陽能板廢棄量與回收機制探討,國立成功大學資源工程學系碩士論文。
5.國家發展委員會 (2022),臺灣 2050 淨零排放路徑及策略總說明 (全文)。
6.國家發展委員會 (2022),臺灣 2050 淨零排放路徑及策略總說明 (簡報)。
7.陳冀豪 (2022),台灣電動汽車發展之經濟、能源與環境影響分析
8.賴俊諾 (2017),廢鋰電池中金屬鈷回收技術開發,國立中山大學環境工程研究所碩士論文。
三、網路資料
1.交通統計查詢網。網址 : static.motc.gov.tw
2.車輛研究測試中心。網址 : https://www.artc.org.tw/
3.u-car(2024)。2024年度台灣汽車市場銷售報告:電動車TOP10。網址 : https://news.u-car.com.tw/news/article/82481
4.LME倫敦交易所 。網址 : https://www.lme.com/
5.中央人民共和國中央人民政府。網址: https://www.gov.cn/zhengce/202502/content_7004966.htm
6.工業技術與資訊月刊。網址: https://news.u-car.com.tw/news/article/82481
7.中國科學院科技戰略諮詢研究室。網址:http://www.casisd.cas.cn/zkcg/ydkb/kjzcyzxkb/2022/zczxkb202210/202301/t20230109_6597764.html
8.經濟部國際貿易署。網址 : https://www.trade.gov.tw/Pages/Detail.aspx?nodeID=45&pid=75292
9.Redwood官方網站。網址 : https://www.redwoodmaterials.com/
10.台灣電池協會。網址 : http://www.taiwanbattery.org.tw/new/news_content/4610
11.上海金屬網。網址 : https://www.shmet.com/
校內:2028-09-01公開