簡易檢索 / 詳目顯示

研究生: 謝宗碩
Xie, Zong-Shuo
論文名稱: 以顏色描述子做影像切割之研究
Image Segmentation Using Unsupervised Classification
指導教授: 賴源泰
Lai, Yen-Tai
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 49
中文關鍵詞: 影像切割
外文關鍵詞: image segmentation
相關次數: 點閱:51下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於數位影音資料庫的日益增加,如何有效管理就顯得更加重要。CBIR(content based image retrieval) 是以影像內容為基礎的影像擷取系統。而影像切割在CBIR也得系統也是很重要的,所有的Query image 都會執行此一步驟。因此我的主要目標是要將一張圖片的背景和前景分開,使得CBIR比對時可以提高效率,並且得到更好的結果。

    As digital audio and video databases increasing, how to effectively manage all the more important. CBIR (content based image retrieval) of video content-based image retrieval system. The images have to cut in CBIR system is also very important, all the Query image will implement this step. So my main goal is to make a picture from the background and prospects, than to make CBIR can improve efficiency and better results.

    摘要 ABSTRACT CONTENTS LIST OF FIGURES Chapter 1 Introduction………………………………….10 1.1 Image Segmentation………………………………10 1.2 Objective………………………………………..11 1.3 Motivation………………………………………12 1.4 Organization of the Thesis…………………12 Chapter 2 Image Segmentation……………………...13 2.1 Principle…………………………………..13 2.2 Unsupervised Classification……………15 2.3 K-means Algorithm……………………….16 2.3.1 Standard k-means clustering algorithms…..18 2.4 K-Harmonic Means Algorithm (KHM)…………..18 2.4.1 Definition……………………………….…………19 2.4.2 The membership and the weight function…………20 2.5 Gaussian Mixture Model………………………………21 2.5.1 Advantages…………………………………………23 2.6 Bayesian Segmentation………………………………23 Chapter 3 Unsupervised Image Segmentation…...24 3.1 Design Flow……………………………………24 3.2 Clustering Algorithm…………………………25 3.2.1 K-means Flowchart………………………………25 3.2.2 K-Centroids….……………………………………27 3.3 The Gaussian Mixtures…………………………29 3.3.1 The Gaussian Mixtures Estimation……………30 3.4 Expectation Maximization Algorithm…………31 3.5 Classification Likelihood……………………37 3.6 Classification Expectation Maximization Algorithm..38 3.7 Clustering Algorithm………………………………41 Chapter 4 Experimental Results 42 Chapter 5 Conclusions 46 REFERENCES 47

    [1] Jing Zhang; Seok-Wun Ha; Leopard Image Retrieval using Region of Interest and Texture Feature, Hybrid Information Technology, 2006. ICHIT '06. International Conference on, Nov. 2006 Digital Object Identifier 10.1109 / ICHIT. 2006. 253504

    [2] R.M. Haralick, K. Shanmugam, and I. Dinstein, “Texture features for image classification,” IEEE Trans. on Syst. Man Cybern., vol. 3, pp. 610-621, Nov. 1973.

    [3] D.A. Clausi and M.E. Jernigan, “ A fast method to determine co-occurrence
    texture features,” IEEE Trans. Geosci. Remote Sensing, vol. 36, pp. 298-300, Feb. 1998.

    [4] Pappas, T.N.; Junqing Chen; Depalov, D.; Perceptually based techniques for image segmentation and semantic classification Communications Magazine, IEEE Volume 45, Digital Object Identifier 10.1109/MCOM.2007.284537

    [5] C. Carson et al., “Blobworld: Image Segmentation Using Expectation-Maximizations and It Application to Image Querying,” IEEE Trans. Pattern Anal. Machine Intell., vol. 24, Aug. 2002, pp. 1026–38.

    [6] T. N. Pappas, “An Adaptive Clustering Algorithm for Image Segmentation,” IEEE Trans. Sig. Proc., vol. SP-40, Apr. 1992, pp. 901–14.

    [7] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum Likelihood from Incomplete Data via the EM Algorithm,” J. Royal Statistical Soc. B, vol. 39, pp.

    [8] R. Fergus, P. Perona, and A. Zisserman, “Object Class Recognition by Unsupervised Scale-Invariant Learning,” Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2003.

    [9] L. Hermes, T. Zo ller, and J.M. Buhmann, “Parametric Distributional Clustering for Color Image Segmentation,” Proc. European Conf. Computer Vision (ECCV ’02), A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, eds., pp. 577-591, 2002.

    [10] J. Malik, S. Belongie, T. Leung, and J. Shi, “Contour and Texture Analysis for Image Segmentation,” Int’l J. Computer Vision, vol. 43, no. 1, pp. 7-27, 2001.

    [11] Muwei Jian, Junyu Dong, Ruichun Tang, Combing Color, Texture and Region With Objects of User’s Interest for Content-Based Image Retrieval,2007 IEEE, Department of Computer Science, Ocean University of China.

    [12] Carson, C., Belongie, S., Greenspan, H., 2002. Blobworld: Image segmentation using expectation-maximization and its application to image querying. IEEE Trans. PAMI 24 (8), 1026–1038.

    [13] A. K. Jain, and F. Farroknia, "Unsupervised texture segmentation using Gabor filters," Pattern Recognition, Vo.24, No.12,pp.1167-1186,1991

    [14] G.Hamerly, C. Elkan, "Alternatives to the k-means algorithm that find better clusterings", Proc. of the ACM Conference on Information and Knowledge Management, CIKM-2002, 2002, 600-607.

    [15] R.H. Turi, "Clustering-based color image segmentation", PhD Thesis, Monash University, Australia 2001.

    [16] Morales, D.I.; Moctezuma, M.; Parmiggiani, F.; Urban edge detection by texture analysisGeoscience and Remote Sensing Symposium, 2004. IGARSS '04. Proceedings. 2004 IEEE International Volume 6, 2004 Page(s):3826 - 3828 vol.6 Digital Object Identifier 10.1109/IGARSS.2004.1369957

    [17] D.A. Clausi, and Yongping Zhao: “Rapid Determination of Co-occurrence Texture Features”, Proc. of the IEEE IGARSS’01, pp. 1880-1882, 2001.

    [18] Clausi, D.A.; Yongping Zhao; An advanced computational method to determine co-occurrence probability texture featuresGeoscience and Remote Sensing Symposium, 2002. IGARSS '02. 2002 IEEE International Volume 4, 24-28 June 2002 Page(s):2453 - 2455 vol.4

    [19] Pappas, T.N.: ‘An adaptive clustering algorithm for image segmentation’, IEEE Trans. Signal Process.

    [20] J. Xie, and H. T. Tsui, Image segmentation based on maximum-likelihood estimation and optimum entropy distribution (MLE–OED), Pattern Recognition Letters, Volume 25, Issue 10 , 16 July 2004, pp. 1133-1141.

    [21] Y.N. and Manjunath, B.S., 2001. Unsupervised segmentation of color–texture regions in images and video. IEEE Trans. Pattern Anal. Mach. Intell. 238, pp. 800–810.

    下載圖示 校內:2011-08-18公開
    校外:2013-08-18公開
    QR CODE