簡易檢索 / 詳目顯示

研究生: 廖英廷
Liao, Ying-Ting
論文名稱: 適用於內部未知連結大尺度資料取樣非線性系統之具有輸入限制反覆學習控制方法的有效追蹤器設計
Effective Tracker Design Based on Iterative Learning Control Methodology with Input Constraint for a Class of Unknown Interconnected Large-Scale Sampled-Data Nonlinear Systems
指導教授: 蔡聖鴻
Tsai, Sheng-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 76
中文關鍵詞: 觀測器/卡爾曼濾波器鑑別方法數位重新設計反覆學習控制輸入限制
外文關鍵詞: observer/Kalman filter identification, digital redesign, iterative learning control, input constraint
相關次數: 點閱:101下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種適用於具有內部未知連結大尺度資料取樣之多輸入多輸出非線性系統,且具有閉迴路解耦特性和輸入限制的分散式反覆學習控制追蹤器。首先,利用離線式的觀測器/卡爾曼濾波器鑑別方法求出此大尺度系統之適當階數(或低階)的分散式線性觀測器。為了克服每一個子系統鑑別線性模型時模型誤差所造成的影響,提出一種基於數位重新設計方法改進的高增益效應觀測器。為了達到追蹤的目的,將具有輸入限制的反覆學習演算控制器嵌入在分散式的模型中,利用連續投影的方式來制定限制型反覆學習控制的法則。基於此種投影方法,提出一種演算法來求得限制反覆學習控制。為了減少學習代數,運用具有高增益特性的數位再設計軌跡追蹤器設計方法決定反覆學習控制器的初始輸入。最後,提出兩個例子來說明此方法的可行性。

    This thesis proposes the decentralized iterative learning control (ILC) for a class of unknown sampled-data interconnected large-scale nonlinear systems consisting of multi-input multi-output (MIMO) subsystems with a closed-loop decoupling property via the observer/Kalman filter identification (OKID) method and convex control input constraints. First, the off-line OKID method is utilized to determine decentralized appropriate (low-) order of discrete-time linear models for the class of unknown interconnected large-scale sampled-data systems by using known input-output sampled data. Then, to overcome the effect of modeling error on the identified linear model of each subsystem, an improved observer with the high-gain property based on the digital redesign approach is presented. For the tracking purpose, an norm-optimal ILC scheme is embedded to the decentralized models, and the constrained ILC problem is formulated in a successive projection framework. Based on the projection method, the algorithm is proposed to solve this constrained ILC. To reduce unwanted learning cycles, the digital-redesign linear quadratic tracker with the high-gain property is proposed to assign the initial control input of ILC. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed methodologies.

    中文摘要 I Abstract II List of Contents III List of Figures IV Chapter 1. Introduction 1 2. Problem Description 4 3. Observer/Kalman Filter Identification 7 3.1 Basic observer equation 7 3.2 Computation of Markov parameters 9 3.3 Eigensystem realization algorithm 10 3.4 Relationship to Kalman filter 13 4. Iterative Learning Control 15 4.1 Introduction 15 4.2 Problem formulation and discrete ILC update law 16 4.3 Successive projection method 18 5. Iterative Learning-Based Decentralized Tracker for unknown Interconnected Large-Scale Systems 26 5.1 Observer-based linear quadratic analog tracker design 26 5.2 Digital redesign of the observer-based linear quadratic analog tracker 29 5.3 Design procedure 32 6. Illustrative examples 34 7. Conclusion 73 References 74

    [2] H. S. Wu, “Decentralized robust-control for a class of large-scale interconnected systems with uncertainties,” International Journal of Systems Science, vol. 20, no. 12, pp. 2597-2608, 1989.
    [3] M. Jamshidi, Large-Scale Systems: Modeling, Control, and Fuzzy Logic. New York, Prentice-Hall, 1996.
    [4] E. J. Davison, “The robust decentralized control of servomechanism problem for composite system with input-output interconnection,” IEEE Transactions on Automatic Control, vol. 24, no. 2, pp. 325-327, 1979.
    [5] P. A. Ioannou and J. Sun, Robust Adaptive Control. Englewood, Prentice-Hall, 1996.
    [6] D. T. Gavel and D. D. Seljuk, “Decentralized adaptive control: Structural conditions for stability,” IEEE Transactions on Automatic Control, vol. 34, no. 4, pp. 413-426, 1989.
    [7] J. N. Juang, Applied System Identification. Englewood Cliffs. NJ, Prentice-Hall, 1994.
    [8] J. N. Juang, M. Q. Phan, L. G. Horta, and R. W. Longman, “Identification of observer/Kalman filter Markov parameters: Theory and experiments,” Journal of Guidance Control and Dynamics, vol. 16, no. 2, pp. 320-329, 1991.
    [9] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of robots by learning,” Journal of Robotic Systems, vol. 1, no. 2, pp. 123-140, 1984.
    [10] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A Survey of Iterative Learning Control,” IEEE Control Systems Magazine, vol. 26, no. 3, pp. 96-114, 2006.
    [11] M. Norrlof, “An adaptive iterative learning control algorithm with experiments on an industrial robot,” IEEE Transactions on Robotics and Automation, vol. 18, no. 2, pp. 245-251, 2002.
    [12] D. I. Kim and S. Kim, “An iterative learning control method with application for CNC machine tools,” IEEE Industry Applications, vol. 32, no. 1, pp. 66-72, 1996.
    [13] C. Mi, H. Lin, and Y. Zhang, “Iterative learning control of antilock braking of electric and hybrid vehicles,” IEEE Transactions Vehicular Technology, vol. 54, no. 2, pp. 486-494, 2005.
    [14] B. Chu and D. H. Owens, “Accelerated Norm-optimal Iterative Learning Control Algorithms using Successive Projection”, International Journal of Process Control, vol. 82, no. 8, pp. 1469-1484, 2008.
    [15] B. Chu and D.H. Owens, “Iterative learning control for constrained linear systems”, International journal of Control, vol. 83, no. 7, pp. 1397-1413, 2010.
    [16] D. H. Owens and R. P Jones, “Iterative Solution of Constrained Differential/Algebraic Systems”, International Journal of Control, vol. 27, no. 6, pp. 957-974, 1978.
    [17] N. Amann, D. H. Owens, and E. Rogers, “Predictive Optimal Iterative Learning Control,” International Journal of Control, vol. 69, no. 2, pp. 203-226, 1998.
    [18] J. S. H. Tsai, T. H. Chien, S. M. Guo, Y. P. Chang, and L. S. Shieh, “State-space self-tuning control for stochastic fractional-order chaotic systems,” IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 54, no. 3, pp. 632-642, 2007.
    [19] F. L. Lewis and V. L. Syrmos, Optimal Control. New York, John Wiley & Sons, 1995.
    [20] S. M. Guo, L. S. Shieh, G. R. Chen, and C. F. Lin, “Effective chaotic orbit tracker: A prediction-based digital redesign approach,” IEEE Transactions on Circuits and Systems I-Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557-1570, 2000.
    [21] S. M. Guo and Z. H. Peng, “An observer-based decentralized tracker for sampled-data systems: an evolutionary programming approach,” International Journal of General Systems, vol. 34, no. 4, pp. 421-449, 2005.
    [22] M. Phan, L. G. Horta, J. N. Juang, and R. W. Longman, “Linear system identification via an asymptotically stable observer,” Journal of Optimization Theory and Applications, vol. 79, no. 1, pp. 59-86, 1993.
    [23] G. Chen and T. Ogorzalek, “Yet another chaotic attractor,” International Journal of Bifurcation Chaos, vol. 9, no. 7, pp.1465-1466, 1999.
    [24] X. Yu and Y. Xia, “Detecting unstable periodic orbits in Chen’s chaotic attractor,” International Journal of Bifurcation and Chaos, vol. 10, no. 8, pp. 1987-1991, 2000.

    下載圖示 校內:2013-08-05公開
    校外:2013-08-05公開
    QR CODE