| 研究生: |
黃國瑋 Huang, Guo-wei |
|---|---|
| 論文名稱: |
熱處理條件對氧化鉿與矽酸鉿薄膜特性的影響 Effects of Thermal Treatments on Properties of Hafnium Oxide and Hafnium Silicates Thin Films |
| 指導教授: |
呂正傑
Leu, Ching-Chich 施權峰 Shih, Chuan-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 熱處理 、氧化鉿 、矽酸鉿 |
| 外文關鍵詞: | Hafnium Silicates, Hafnium Oxide, Thermal Treatments |
| 相關次數: | 點閱:98 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究分成兩部分,第一部分探討以HfO2作為MIS結構中的絕緣氧化層,使用爐管(Furnace)及快速退火爐(RTA)作退火。由實驗結果可知,無論是以爐管還是RTA作退火,若退火溫度提升,薄膜的結晶性會較好,介電常數值(κ)提高,並降低氧化層中的缺陷,減少VFB的偏移量,而漏電流並無明顯的變化。而若HfO2製程時的氧壓比例提升,退火後結晶性會變好,介電常數值提高而漏電流降低,對VFB則無太大的影響。與爐管退火相比較,HfO2薄膜以RTA作退火有較好的結晶性、較低的漏電流、VFB偏移量少以及較高的介電常數。
第二部分探討以HfxSi1-xO2作為MIS結構中的絕緣氧化層。電子能譜儀(HRXPS)分析中發現,退火溫度愈高Hf 4f軌域之訊號峰會往鍵結能高處偏移。除了H20S80外,其它成分之漏電流密度隨退火溫度上升而下降,VFB的偏移量則隨退火溫度上升而減少。當矽酸鉿中矽原子比(Si/(Hf+Si))增加時,HRXPS分析中Hf4f、Si2p、O1s三軌域之訊號峰會往鍵結能高處偏移。在矽原子比(Si/(Hf+Si))為30%~70%之間,漏電流大小則是隨矽原子比例上升而下降。當矽酸鉿成分為H30S70時,有比其他成分的漏電流最低,VFB的偏移量亦是成分條件中最小的。
The first part of this thesis is to investigate the property of MIS structure by employing a sputtered HfO2 as the insulating layer. The high temperature annealed specimens, regardless of anneal method (Furnace or RTA), had better crystallization of HfO2, higher dielectric constant value (κ), less defects and flatband voltage (VFB)shift, but high annealing temperature did little influence on leakage current density. The HfO2, deposited with high oxygen ratio, exhibited better crystallization, higher dielectric constant value (κ) and less leakage current. But oxygen ratio did little influence on VFB value. As compared with furnace annealing, the HfO2 with RTA process had better crystallization, lower leakage current, less VFB shift and higher dielectric constant.
The second part is to investigate the property of hafnium silicates(HfxSi1-xO2) as used as an insulating layer in a MIS structure. By increasing the annealing temperature, the Hf 4f signals shifted to higher binding energy. The high temperature annealed specimens exhibited relatively low leakage current and less VFB shift, excluded the H20S80. Furthermore, ,the Hf 4f, Si 2p and O 1s signals shift to higher binding energy as the SiO2 fraction increased. As the SiO2 fraction of hafnium silicates was within 30% - 70%, the leakage current reduced. It was observed that H30S70 exhibited the least leakage current and VFB shift among all the specimens.
[1] J. Robertson, “High dielectric constant oxides”, Eur. Phys. J.: Appl. Phys. 28, 265 (2004).
[2] Bing-Yue Tsui and Hsiu-Wei Chang, “Formation of interfacial layer during reactive sputtering of hafnium oxide”, J. Appl. Phys. Vol. 93, pp. 10119-10124 (2003)
[3] Hyoungsub Kim, Paul C. Mclntyre, and Krishna C. Saraswat, “Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition”,Appl. Phys. Lett. Vol.82, pp. 106-108 (2003)
[4] P. Zurcher et al., Mater. Res. Soc. Symp. Proc. 541, 11 (1999).
[5] A. Grill et al., Mater. Res. Soc. Symp. Proc. 541, 89 (1999).
[6] H. J. Hubbard and D. G. Schlom, J. Mater. Res. 11, 2757 (1996).
[7] B. Cheng, M.C. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. C. Stork, Z. Yu, M. Zeitzoff, and J. C. S. Woo, “The impact of high-k gate dielectrics and metal gate electrodes on Sub-100 nm MOSFETs , IEEE Trans. Electron Devices Vol. 46, pp. 1537-1544(1999).
[8] M.-H. Cho, D.-H. Ko, Y. G. Choi, K. Jeong, I. W. Lyo, D. Y. Noh, H. J. Kim, and C. N. Whang, “Thickness dependence of Y2O3 films grown on an oxidized Si surface”, J. Vac. Sci. Technol. A 19, 192 (2001)
[9] J B. H. Lee, Y. J, K. Zawadzki, W.-J. Qi, and J. Lee, Appl. Phys. Lett. 24, 3143 (1999).
[10] V. Mikhelashvili and G. Eisenstein, J. Appl. Phys. 89, 3256 (2001).
[11] M-H. Cho, Y. S. Roh, C. N. Whang, and K. Jeong, S. W. Nahm and D.-H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, “Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition”, Appl. Phys. Lett. Vol. 81, pp. 472-474 (2002)
[12] J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000)
[13] T. M. Klein, D. Niu, W. S. Epling, W. Li, D. M. Maher, C. C. Hobbs, R. I. Hegde, I. J. R. Baumvol, and G. N. Parsons,“ Evidence of aluminum silicate formation during chemical vapor deposition of amorphous Al2O3 thin films on Si(100)”,Appl. Phys. Lett. Vol. 75, pp. 4001-4003 (1999)
[14] S. M. Hu, “Stress-related problems in silicon technology”, J. Appl. Phys. Vol. 70 (6), pp. R53-R80 (1991)
[15] B. Cheng et al., IEEE Trans. Electron Devices, ED-46, pp.1537-1544 (1999).
[16] 林鴻志,”奈米金氧半電晶體元件技術發展驅勢(I)”,
[17] K. J. Hubbard and D. G. Schlom,“ Thermodynamic stability of binary oxides in contact with silicon”, J. Mater. Res., 11, pp.2757-2774 (1996).
[18] B. H. Lee, L. Kang, W. J. Qi, R. Nieh, Y. Jeon, K. Onishi, and D. L. Kwong, Tech. Dig.-Int. Electron Devices Meet. Vol. 1999, p133 (1999).
[19] I. Barin,“Thermalchemical Data of Pure Substances”, VCH, Weiheim (1989).
[20] Jack C. Lee,“Ultra-thin gate dielectrics and High-k dielectrics”,IEEE EDS vanguard series of independent short courses.
[21] M. Balog, M. Schieber, M. Michiman, and S. Patai, Thin Solid Films 41,247 (1997)
[22] B. H. Lee, L. Kang, W.-J. Qi, R. Nieh, Y. Jeon, K. Onishi, and J. C. Lee, Tech. Dig. Int. Electron Devices Meet. , 133 (1999).
[23] 林正漢,“Pt-SBT-HfO2-Si MFIS 鐵電薄膜電容結構之研究”,國立清華大學,碩士論文 (2005)
[24] S. M. SZE, “SEMICONDUCTOR DEVICES Physics and Technology ” , 2rd Edition, John Wiley and Cons, Inc., 2002.
[25] 劉漢文, “ 固態電子元件 ”
[26] D. A. Neamen., “Semiconductor physics and devices :basic principles”, Irwin, 1992.
[27] Dieter K. Schroder, “Semiconductor Material and Device Characterization”, 2rd Edition, John Wiley and Cons, Inc., 1998.
[28] Jasprit Singh., “Semiconductor Devices Basic Principles” , John Wiley and Cons, Inc., 2001.
[29] 呂正傑, 詹世雄,“鐵電記憶體簡介”, 毫微米通訊第五卷第四期
[30] Ashok K. Sharma, Advanced Semiconductor Memories, (2003)
[31] Brent Keeth‧R.D Jacob Baker, DRAM Circuit Design, (2001)
[32] Betty Prince, Semiconductor Memories, (1991)
[33] Angus I. Kingon, Jon-Paul Maria, S. K. Streiffer,“Alternative dielectrics to silicon dioxide for memory and logic devices”, Nature, Vol.406 (2000)
[34] E. Cartier, B. He, E. Gousev, D. A. Buchanan, H. F. Okorn-Schmidt, M. Copel, and M. Gribelyuk, Proceedings of the Material Research Society, MRS, San Francisco, Ca, 2000.
[35] T. Ma, S. A. Campbell, R. Smith, N. Hoilien, B. He, W. L. Gladfelter, C. Hobbs, C. Taylor, M. Gribelyuk, and M. Coppel (to be publishe).
[36] L. Kang, Y. Jeon, K. Onishi, B. H. Lee, W.-J. Qi, R. Nieh, S. Gopalan, and J. C. Lee, 2000 Symposium on VLSI Technology, IEEE Electronic Devices Society, Honolulu, June 2000, p. 44
[37] P. Lysaght, B. Foran, S. Stemmer, G. Bersuker, J. Bennett, R. Tichy , L. Larson and H. R. Huff,“Thermal response of MOCVD hafnium silicate”, Microelectronic Engineering 69 (2003) 182–189
[38] Yu-Hsien Lin, Chao-Hsin Chien, Ching-Tzung Lin, Chun-Yen Chang, and Tan-Fu Lei,“Novel Two-Bit HfO2 Nanocrystal Nonvolatile Flash Memory”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 53, NO. 4, APRIL 2006
[39] C. N. R. Rao, K. J. Rao, “Phase Transitions in Solids”, McGraw-Hill, New York, 1978
[40] G. W. Cahn,Trans. Met. Soc. AIME, 242, P. 166, 1968.
[41] J. E. Hilliard, Phase Transformations, ASM,pp. 497~560, Chapman & Hall, London, 1970.