簡易檢索 / 詳目顯示

研究生: 李威德
Lee, Wei-Der
論文名稱: 生理肌電訊號辨識系統晶片之實作與量測
Implementation and Measurement of EMG Recognition Chip
指導教授: 林志隆
Lin, Chih-Lung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 74
中文關鍵詞: 圖形辨識晶片肌電圖量測特殊用途積體電路超大型積體電路
外文關鍵詞: measurement, VLSI, ASIC, DTW, cepstral, recognition, chip, EMG
相關次數: 點閱:105下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究承續了本實驗室的研究成果,發展出生理肌電訊號辨識核心晶片,藉由分析肌電圖訊號來判斷出肢體障礙者所做之動作,辨識指揮命令並且做出控制訊號,做為癱瘓患者與電子輔助設備間之人機溝通介面。本論文以超大型積體電路之設計方式實現了生理肌電圖辨識系統晶片,使用圖形辨識的技術,將肌電圖訊號的倒頻譜(cepstral)參數做為特徵值,並且利用動態時間校準做為辨識演算法。在晶片設計上使用單時脈設計和折疊架構方式,以減少運算單元,達到縮小面積、降低成本和即時辨識的需求,經由TSMC 0.18 um Mixed signal CMOS製程下線成功,core size為0.887 x 0.887 mm2,chip size為1.837 x 1.837 mm2,並且在晶片之中加入了掃描鏈設計(scan chain)以增加晶片的可測試性。本晶片通過國家晶片系統設計中心的高階混合訊號自動測試系統「Agilent 93000 SOC Test System」之完整測試,量測結果驗證模擬結果與晶片功能一致,並將晶片整合於外部系統電路,完成了生理肌電訊號辨識晶片之系統雛型。

    This study presents a surface electromyogram (EMG) recognition chip. The EMG signals picked up from the intact musculature during volitional motion can be analyzed by the EMG recognition chip as a control interface between the handicapped people and bioelectronics auxiliary tools. This EMG recognition chip was developed as an application-specific integrated circuit (ASIC). An EMG pattern-recognition algorithm composed of a cepstrum extraction core and a dynamic warping core is mapped in this system. A single clock design and floded architecture are adopted to reduce the chip area for low cost and real-time recognition. This chip is fabricated using 0.18 um CMOS single-poly six-metal technology on a die sized 0.887 x 0.887 mm2 and was fully tested via the Agilent 93000 SOC Test System at the national chip implementation center (CIC). The memory build-in-self-test (BIST) and scan chain are designed for testability. Test results verify the consistency between hardware description language simulations and chip function measurement results. The prototype of the surface EMG recognition system is composed of the EMG recognition chip and a system circuit board.

    中文摘要 .................................i Abstract .................................ii 致謝 .................................iii 目錄 .................................iv 表目錄 ..................................vi 圖目錄 ..................................vii 第一章、論...............................1 1.1 研究動機及目的....................1 1.2 本研究群之相關研究................4 1.3 研究架構..........................8 1.4 研究背景與文獻探討................9 1.5 論文架構簡介......................12 第二章、肌電訊號辨識基本原理...............13 2.1 肌電圖訊號概論....................13 2.2 肌電圖訊號擷取....................14 2.3 圖形辨識..........................15 2.4 肌電圖辨識系統架構:...............16 第三章、肌電圖辨識系統架構與設計流程.......18 3.1 晶片設計簡介......................18 3.2 特徵值功能區塊....................19 3.3 即時辨識模組區塊..................20 3.4 資料庫模組區塊....................22 第四章、肌電圖辨識晶片設計架構與硬體實現...23 4.1 晶片簡介..........................23 4.2 晶片設計流程......................27 4.2.1 打線與腳位對照圖與晶片腳位定義....29 4.2.2 晶片模式與腳位關係................31 4.2.3 晶片規格..........................36 4.3 晶片佈局後模擬結果................38 4.4 實體驗證..........................44 第五章、系統量測...........................46 5.1 晶片量測..........................46 5.1.1 量測結果與模擬結果................49 5.1.2 什穆圖(Shmoo plot)................52 5.2 外部系統電路設計..................54 5.3 晶片系統量測......................58 第六章、結論與未來展望.....................63 6.1 結論..............................63 6.2 未來展望..........................64 參考文獻...................................65 附錄.......................................70 自述.......................................74

    [1]S. Yu, T. Guan, D. Ye, “An improvement of speech synthesis in acoustic simulation model of cochlear implants with CIS strategy,” Conf. Proc. IEEE Eng. Med. Biol., pp. 5343-5346, Sep. 2005.
    [2]R. M. Weng, J. C. Tseng, “A biphasic current stimulus circuit for an implantable retinal prosthetic device,” IEEJ International Analog VLSI Workshop, p06011, pp. 16-18, Nov. 2006.
    [3]O. K. Cho, “Noninvasive measurement of glucose by metabolic heat conformation method,” Clinical Chemistry, Vol. 50:10, pp. 1894-1898, Aug. 2004.
    [4]F. C. Delori, “Noninvasive technique for oximetry of blood in retinal vessels,” Appl. Optics, Mar. 1988.
    [5]N. Wiener, “Cybernetics or control and communication in the animal and the machine,” MIT Press, Nov. 1948.
    [6]D. Dorcas, R. N. Scott, “A three state myoelectric control,” Med. Biol. Eng., vol. 4, pp. 367-372, 1966.
    [7]D. A. Childress, “A myoelectric three state controller using rate sensitivity,” in Proc. ICMBE, pp. 4-5., 1969
    [8]K. Ito, T. Tsuji, A. Kato, M. Ito, “An EMG-controlled prosthetic forearm in three degrees of freedom using ultrasonic motors,” Proc. Conf. of the IEEE Eng. Med. Biol., pp. 1487-1488, Nov. 1992.
    [9]P. Parker, J. Stuller, N. Scott, “Signal processing for the multistate myoelectric channel,” Proc. of the IEEE, vol. 65, pp. 662-674, May 1977.
    [10]S. Jacobsen, D. Knutti, R. Johnson, H. Sears, “Development of the utah artificial arm,” IEEE Trans. Biomed. Eng., vol. 29, pp. 249-269, Apr. 1982.
    [11]K. Kiguchi, T. Tanaka, T. Fukuda, “Neuro-fuzzy control of a robotic exoskeleton with EMG signals,” IEEE Tran. on Fuzzy Systems, vol. 12, pp. 481-490, Jun. 2004.
    [12]D. Grupe, J. Magnussen, A. A. Beex, “A microprocessor system for multifunction control of upper limb prosthesis via EMG signal identification,” IEEE Trans. on Automatic Control, vol. 23, pp. 539-544, 1978.
    [13]G. N. Saridis and T.P. Gootee, “EMG pattern analysis and classification for a prosthetic arm,” IEEE Trans. Biomed. Eng., vol. 29, pp. 403-412, Jun. 1982.
    [14]C. J. Abul-haj and N. Hogan, “Functional assessment of control systems for cybernetic elbow prostheses - Part I, Part II,” IEEE Trans. Biomed. Eng., vol. 37, pp. 1025-1047, Jan. 1990.
    [15]W. J. Kang, J. R. Shiu, C. K. Cheng, J. S. Lai, H. W. Tsao, T. S. Kuo, “The application of cepstral coefficients and maximum likelihood method in EMG pattern recognition,” IEEE Trans. Biomed. Eng., vol. 42, pp. 777-785, Aug. 1995.
    [16]G. C. Chang, W. J. Kang, J. J. Luh, C. K. Cheng, J. S. Lai, J. J. Chen and T. S. Kuo, “Real-time implementation of electromyogram pattern recognitionas a control command of man-machine interface,” Med. Eng. Phys. vol. 18, pp. 529-537, Oct. 1996.
    [17]林政廷, “以場效可程式閘陣列實現肌電訊號控辨識系統,” 國立台灣大學電機工程學系碩士論文, 民國九十四年.
    [18]黃富胤, “肌電訊號辨識系統之數位晶片實作,” 國立成功大學電機工程學系碩士論文, 民國九十五年.
    [19]C. M. Huang, “Multi-project system-on-chip (MP-SoC) design guidelines,” National Chip Implementation Center, Jul. 2006.
    [20]J. Park, J. Son, H. Seo, M. Ishida, “4-subject 4-channel optical telemetry system for use in electrocardiograms,” Proc. IEEE International Conf. on Circuits and Systems, vol. 3, pp. 251-254, 1998
    [21]W. Massagram, O. Boric-Lubecke, L. Macchiarulo, M. Chen, “Heart rate variability monitoring and assessment system on chip,” IEEE EMBS, pp. 7369-7372, Sep. 2005.
    [22]X. Wang, M. Chen, L. Macchiarulo, O. Boric-Lubecke, “Fully-integrated heart rate variability monitoring system with an efficient memory,” IEEE EMBS, pp. 5064-5067, Aug. 2006.
    [23]W. J. Ross-Dmseath, E. F. Kelly, “Multi-channel PC-based data-acquisition system for high-resolution EEG,” IEEE Trans. Biomed. Eng., vol. 42, Nov. 1995.
    [24]R. Martins, S. Selberherr, and F. A. Vaz, “A CMOS IC for portable EEG acquisition systems,” IEEE Trans. on Instrumentation and Measurement, vol. 47, Oct. 1998.
    [25]G. Duzenli, Y. Kilic, H. Kuntman, A. Ataman, “On the design of low-frequency filters using CMOS OTAs operating in the sub-threshold region,” Elsevier Microelectronics, pp. 45-54, 1999.
    [26]X. Jiang, X. Wang, “Development of ultra small two-channel system of EEG radio telemetry,” Conf. Proc. IEEE on Neural Interface and Control Proceedings, Wuhan, China, May 2005.
    [27]H. Chen, D. Ye, J. Lee, “Development of a portable EEG monitoring system based on WLAN,” IEEE International Conf., pp. 460-465, 2007.
    [28]C. J. Yen, W. Y. Chung, M. C. Chi, S. H. Lee “A 0.75-mW analog processor IC for wireless bio-signal monitor,” Proc. IEEE International Symposium on Low Power Electronics and Design, pp. 443-448, 2003.
    [29]M. Shojaei-Baghini, R. K. Lal, D. K. Sharma, “A low-power and compact analog CMOS processing chip for portable ECG Recorders,” IEEE Asian Solid-State Circuits Conf., pp. 473-476, 2005.
    [30]E. Gallasch, D. Rafolt, M. Moser, J. Hindinger, H. Eder, G. WieBpeiner, T. Kenner, “Instrumentation for assessment of tremor, skin vibrations, and cardiovascular variables in MIR space missions,” IEEE Trans. Biomed. Eng., vol.43, pp. 328-333, 1996.
    [31]K. Murari, M. Stanacevic, G. Cauwenberghs, N.V Thakor, “Integrated potentiostat for neurotransmitter sensing,” IEEE Trans. on EMBS vol. 24, pp. 23-29, Nov. 2005.
    [32]J. V. Basmajian, C. J. De-Luca, “Muscle alive,” Baltimore, Williams and Wikins, 1985.
    [33]P. C. Doerschuk, K. E. Gustafson, and A. S. Willsky, “Upper extremity limb function discrimination using EMG signal analysis,” IEEE Trans. Biomed. Eng., vol.30, pp.18-28, Jan. 1983.
    [34]劉柏駿, “EMG-based Robot Arm Control System,” 國立交通大學電機與控制工程學系碩士論文, 民國九十四年.
    [35]C. J. De-Luca, “Surface electromyography: detection and recording,” DelSys, Inc., 2002.
    [36]U. J. Chaung, “Design automation of memory built-in self test,” National Chip Implementation Center, 2002.
    [37]A. J. van de Goor, “Testing semiconductor memories: theory and practice,” John Wiley & Sons, Chichester, England, 1991.
    [38]J. U. Tsai. “Design for testability with turboBIST-memory, DFT compiler and tetraMAX,” National Chip Implementation Center, 2006.
    [39]“申請及審查流程,” National Chip Implementation Center, 2007.
    [40]C. M. Huang, “Cell-based IC design concepts,” National Chip Implementation Center, 2007.
    [41]Z. B. Chen, “Digital chip testing with Agilent 93000 SoC series,” National Chip Implementation Center, 2007.
    [42]Z. U. Chuang, “Cell-based IC physical design and verification with Astro,” National Chip Implementation Center, 2005.

    下載圖示 校內:2009-06-30公開
    校外:2009-06-30公開
    QR CODE