| 研究生: |
陳揚 Chen, Yang |
|---|---|
| 論文名稱: |
四線圈式多環同軸型無線電能傳輸系統之匹配特性研究 Study on Matching Characteristics of Four-coil Multi-ring Coaxial Type Wireless Power Transfer System |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 無線電能傳輸 、四線圈式感應耦合結構 、多環同軸型 |
| 外文關鍵詞: | wireless power transfer, four-coil inductive coupled structure, multi-ring coaxial type |
| 相關次數: | 點閱:85 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在四線圈式無線電能傳輸系統之匹配特性研究,並利用多環同軸型線圈之方式提升體積利用率與水平偏移容忍度。透過四線圈式架構進行大間距之電能傳輸,同時針對繞製出的耦合結構進行參數量測,根據理論推導四線圈結構之相關參數並進行阻抗匹配,以實現耦合結構傳輸能力提升之目的。文中運用 Maxwell磁場模擬軟體分析不同線圈結構其磁場強度差異,依據模擬結果設計出本文之耦合結構,並藉由四線圈式等效模型分析諧振特性,計算本文所需之諧振參數。最後經實驗量測結果可得知,匹配後之耦合結構傳輸效率明顯高於未匹配之效率,當共振線圈間距離為1 m,經匹配後整體系統最佳傳輸效率約35.2%,最大輸出功率約50.4 W。
This thesis is to study the on matching characteristics of four-coil type wireless power transfer system, and uses multi-ring coaxial coils to enhance the volume efficiency and horizontal offset tolerance. The system can transmit great spacing power through the four-coil structure. According to theoretical derivation of four-coil structure parameters and execute impedance matching, we can enhance transmitting capacity. This thesis analyzes magnetic field intensity of different coil structures with magnetic field simulation software. The proposed coupling structure is designed based on the simulated results, and the resonant characteristics are analyzed with four-coil equivalent model. Finally, the experimental results show that the efficiency of matched coupling structure is higher than that of non-matching coupling structure. The system efficiency is 35.2% while coil spacing is 1 m, and the maximum power is 50.4 W.
[1] 李成斌,具新型三相感應耦合結構之電動車用非接觸式充電槳系統,國立成功大學電機工程學系碩士論文,2013年。
[2] W. X. Zhong, Xun Liu, and S. Y. R. Hui, “A novel single-layer winding array and receiver coil structure for contactless battery charging systems with free-positioning and localized charging features,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4136–4144, Sep. 2011.
[3] H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Comparison of characteristics on planar contactless power transfer systems,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2980–2993, Jun. 2012.
[4] S. Y. R. Hui and W. W. C. Ho, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620–627, May 2005.
[5] J. Achterberg, E. A. Lomonova, and J. de Boeij, “Coil array structures compared for contactless battery charging platform,” IEEE Trans. Magn., vol. 44, no. 5, pp. 617–622, May 2008.
[6] W. C. Ho and S. Y. R. Hui, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, May 2005.
[7] Y. You, B. H. Soong, S. Ramachandran, and W. Liu, “Palm size charging platform with uniform wireless power transfer,” in Proc. Int. Conf. Control Automation Robotics and Vision, 2010, pp. 85-89.
[8] P. Raval, D. Kacprzak, and A. P. Hu, “A wireless power transfer system for low power electronics charging applications,” in Proc. IEEE Conf. Industrial Electronics and Applications, 2011, pp. 520-525.
[9] D. J. Young, P. Cong, M. A. Suster, N. Chimanonart, and W. H. Ko, “Wire¬less power recharging for implantable bladder pressure chronic moni¬toring,” in Proc. IEEE NEMS’10, 2010, pp. 604-647.
[10] H. Matsuki, M. Shiiki, K. Murakami, and T. Yamamoto, “Investigation of coil geometry for transcutaneous energy transmission for artificial heart,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2406-2408, Sep. 1992.
[11] C. Y. Huang, J. T. Boys, G. A. Covic, and M. Budhia, “Practical considerations for designing IPT system for EV battery charging,” in Proc. IEEE VPPC’09, 2009, pp. 402-407.
[12] Y. Hori, “Future vehicle society based on electric motor, capacitor and wireless power supply,” in Proc. IEEE IPEC’10, 2010, pp. 2930–2934.
[13] B. Gu, J. S. Lai, N. Kees, and C. Zheng, “Hybrid-switching full-bridge DC-DC converter with minimal voltage stress of bridge rectifier, reduced circulating losses, and filter requirement for electric vehicle battery chargers,” IEEE Trans. Power Electron., vol. 28, no. 3, pp. 1132-1144, Mar. 2013.
[14] F. Musavi, M. Edington, and W. Eberle, “Wireless power transfer a survey of EV battery charging technologies,” in Proc. IEEE ECCE’12, 2012, pp. 1804-1810.
[15] N. H. Kutkut and K. W. Klontz, “Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler,” in Proc. IEEE APEC, 1997, vo1. 2, pp. 841-847.
[16] J. G. Hayes, M. G. Egan, J. M. D. Murphy, S. E. Schulz, and J. T. Hall, “Wide-load-range resonant converter supplying the SAE J-1773 electric vehicle inductive charging interface,” IEEE Trans. Ind. Appl. , vol 35, pp. 884-895, Jul. 1999.
[17] K. Kobayashi, T. Pontefract, Y. Kamiya, and Y. Daisho, “Development and performance evaluation of a non-contact rapid charging Inductive power supply system for electric micro-bus,” in Proc. IEEE VPPC’11, 2011, pp 1-6.
[18] Y. Nagatsuka, N. Ehara, Y. Kaneko, S. Abe, and T. Yasuda, “Compact contactless power transfer system for electric vehicles,” in Proc. Int. Conf. Power Electronics, 2010, pp. 807-813.
[19] T. Yasuda, I. Norigoe, S. Abe, and Y. Kaneko, “Contactless charging system,” in Proc. IEEE INTELEC’11, 2011, pp. 1-7.
[20] G. A. J. Elliott, G. A. Covic, D. Kacprzak, and J. T. Boys, “A new concept: asymmetrical pick-ups for inductively coupled power transfer monorail systems,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3389-3391, Oct. 2006.
[21] B. M. Song, R. Kratz, and S. Gurol, “Contactless inductive power pickup system for maglev applications,” in Proc. IEEE IAS, 2002, pp. 1586-1591.
[22] J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, Dec. 2006.
[23] P. Sergeant and A. Bossche, “Inductive coupler for contactless power transmission,” IEEE Trans. Ind. Appl., vol. 2, no.1 pp.1-7, 2008.
[24] D. Kacprzak, G. A. Covic, and J. T. Boys, “An improved magnetic design for inductively coupled power transfer system pickups,” in Proc. IPEC’05, 2005, vol. 2, pp. 1133-1136.
[25] T. Gerrits, D. C. J. Krop, L. Encica, and E. A. Lomonova, “Development of a linear position independent inductive energy transfer system,” in Proc. IEMDC, 2011, pp. 1445-1449.
[26] A. Kawamura, G. Kuroda, and C. Zhu, “Experimental result on contact-less power transmission system for the high-speed trains,” in Proc. IEEE PESC, 2007, pp. 2779-2784.
[27] Y. D. Ko and Y. J. Jang, “The Parameter Design of the Wireless Power Electric Vehicle,” in Proc. IEEE VTC, 2014, pp.1-5.
[28] C. S. Lin, S. G. Lin, C. F. Chang, H. H. Li, and L. R. Chen, “Model of contactless power transfer system for linear track,” in Proc. IEEE PEDS, 2010, pp. 1075-1079.
[29] J. Huh, S. Lee, C. Park, G. H. Cho, and C. T. Rim, “High performance inductive power transfer system with narrow rail width for on-line elec¬tric vehicles,” in Proc. IEEE ECCE’10, 2010, pp. 647-651.
[30] K. W. Klontz, A. Esser, R. R. Bacon, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “An electric vehicle charging system with universal inductive interface,” in Proc. IEEE PCCON’02, 2002, pp. 227–232.
[31] M. Mochizuki, A. Asada, T. Ura, Z. Yoshida, R. Lwase, T. Goto, M. Fujita, M. Sato, O. L. Colombo, T. Tanaka, Z. Hong, and K. Nagahashi, “Development of seafloor geodetic observation system based on AUV and submarine cable technologies,” in Proc. IEEE Oceans’10, 2010, pp. 1–4.
[32] A. Celestea, P. Jeantya, and G. Pignoletb, ” Case study in Reunion Island,” Acta Astronaut., vol. 54, no. 4, pp. 253-258, Nov. 2002.
[33] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, no. 5834, pp. 83-86, Jul. 2007.
[34] R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Efficient weakly-radiative wireless energy transfer: An EIT-like approach,” Ann. Phys., vol. 324, no. 8, pp. 1783-1795, Aug. 2009.
[35] A. Kurs, R. Moffatt, and M. Soljacic, “Simultaneous mid-range power transfer to multiple devices,” Appl. Phys. Lett., vol. 96, no. 4, p. 044 102, Jan. 2010.
[36] “Nikola Tesla dreams become a reality in WiTricity,” WiTricity Inc., U. S. A. [Online]. Available: http://witricity.com/news/nikola-tesla-dreams- become-a-reality-in-witricity/
[37] “Intel-Newsweek Innovation Report,” Intel Inc., U. S. A. [Online]. Available: http://www.intel.com/pressroom/kits/innovation/survey/
[38] A. P. Sample, D. A. Meyer, and J. R. Smith, “Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 544- 554, Jan. 2011.
[39] T. P. Duong and J. W. Lee, “Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 8, pp. 442-444, Aug. 2011.
[40] B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, “Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers,” IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1819-1825, Jul. 2009.
[41] A. P. Sample, D. A. Meyer, and J. R. Smith, “Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 544-554, Feb. 2011.
[42] S. Y. R. Hui, W. Zhong, and C. K. Lee, “A critical review of recent progress in mid-range wireless power transfer,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4500-4511. Sep. 2014.
[43] J. Park, Y. Tak, Y. Kim, Y. Kim, and S. Nam, “Investigation of adaptive matching methods for near-field wireless power transfer,” IEEE Trans. Antennas Propag., vol. 59, no. 5, pp. 1769-1773. May 2011.
[44] D. Ahn and S. Hong, “A study on magnetic field repeater in wireless power transfer,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 360-371, Jan. 2013.
[45] C. J. Chen, T. H. Chu, C. L. Lin, and Z. C. Jou, “A study of loosely coupled coils for wireless power transfer,” IEEE Trans. Circuits Syst. II, Exp. Briefs., vol. 57, no. 7, pp. 536-540, Jul. 2010.
[46] W. S. Lee, W. I. Son, K. S. Oh, and J. W. Yu, “Contactless energy transfer systems using antiparallel resonant loops,” IEEE Trans. Ind. Electron., vol. 60, no. 1, Jan. 2013.
[47] H. C. Son, J. W. Kim, Y. J. Park, and K. H. Kim, “Efficiency analysis and optimal design of a circular loop resonant coil for wireless power transfer,” in Proc. IEEE APMC, 2010, pp. 849-852.
[48] L. Yongxiang, Y. Zhou, H. Xingzhe, R. Yi, and W. Yi, “Full-wave analysis of non-radiative wireless power transmission system in half space,” in Proc. IEEE GHTCE, 2012, pp. 155-158.
[49] M. Budhia, J. T. Boys, and G. A. Covic, “Design and optimization of circular magnetic structures for lumped inductive power transfer systems,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3096-3108, Nov. 2011.
[50] M. L. G. Kissin, D. Kacprzak, N. Clausen, H. Hao, and G. A. Covic, “A bipolar primary pad topology for EV stationary charging and highway power by inductive coupling,” in Proc. IEEE ECCE’11, 2011, pp. 1832-1838.
[51] G. A. Covic and J. T. Boys, “Modern trends in inductive power transfer for transportation applications,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 1, no. 1, pp. 28-41, Mar. 2013.
[52] C. S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
[53] S. W. Lee, J. Huh, C. B. Park, N. S. Choi, G. H. Cho, and C. T. Rim, “On-line electric vehicle using inductive power transfer system,”in Proc. IEEE ECCE’10, 2010, pp. 1598–1601.
[54] J. Huh, S. W. Lee, W. Y. Lee, G. H. Cho, and C. T. Rim, “Narrow-width inductive power transfer system for online electrical vehicles,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3666–3679, Dec. 2011.
[55] S. Ahn, J. Pak, T. Son, H. Lee, J. G. Byun, D. Kang, C. S. Choi, E. Kim, J. Ryu, M. Kim, Y. Cha, Y. Chun, C. T. Rim, J. H. Yim, D. H. Cho, and J Kim, “Low frequency electromagnetic field reduction techniques for the on-line electric vehicle (OLEV),” in Proc. IEEE EMC, 2010, pp. 625–630.
[56] 詹凱筌,具可拆卸機制封閉型耦合結構之非接觸式線型感應饋電軌道系統,國立成功大學電機工程學系碩士論文,2012年。
[57] 賴景明,應用四線圈式多環同軸型感應耦合結構於大間隙無線電能傳輸系統之研究,國立成功大學電機工程學系碩士論文,2012年。
[58] 張華敬,電動搬運載具用非接觸式三相線型感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2013年。
[59] 周彥成,具多環交疊型感應耦合結構之非接觸式電動車充電平台,國立成功大學電機工程學系碩士論文,2014年。
[60] 張遠帆,具疊圈型感應耦合結構陣列之非接觸式電動車供電軌道,國立成功大學電機工程學系碩士論文,2014年。
[61] Y. Zhang, Z. Zhao, and K. Chen, “Frequency-splitting analysis of four-coil resonant wireless power transfer,” IEEE Trans. Ind. Appl., vol. 50, no. 4, Jul. 2014.
[62] J. O. M. Miranda, G. Fanti, Y. Feng, K. Omanakuttan, R. Ongie, A. Setjoadi, and N. Sharpe, “Wireless power transfer using weakly coupled magnetostatic resonators,” in Proc. IEEE ECCE, 2010, pp. 4179-4186.
[63] dsPIC30F4011/4012 Data Sheet High Performance Digital Signal Controllers, Microchip inc., 2005.