| 研究生: |
馬婉華 Ma, Wan-Hua |
|---|---|
| 論文名稱: |
機率式海嘯危害度分析方法建立-應用於核三廠 Methodology of Probabilistic Tsunami Hazard Analysis- Application to the Area of the Maanshan Nuclear Power Plant |
| 指導教授: |
蕭士俊
Hsiao, Shih-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 海嘯危害度分析 、機率式 、定率式 、COMCOT |
| 外文關鍵詞: | COMCOT, Probabilistic tsunami hazard analysis, Maanshan nuclear power plant |
| 相關次數: | 點閱:69 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年陸續發生2004年南亞大地震和2011年日本311大地震,兩起大地震事件皆引發重大海嘯災害,造成數萬人傷亡,因此再度引起研究學者對於海嘯相關研究的重視,而處於板塊交界處且四面臨海的台灣更不可忽視這個問題。
不同於傳統上較常使用的定率式海嘯危害度分析方法 (Deterministic Tsunami Hazard Analysis, DTHA),本研究主要將根據PG&E (2010) 和Thio 等人 (2010) 建立機率式海嘯危害度分析方法 (Probabilistic Tsunami Hazard Analysis, PTHA) ,並且加入模式和震源參數的不確定性,使得結果能夠更為全面性,卻也因為納入了各種不確定性,因此處理上相較於定率式方法困難。
本研究使用數值模式COMCOT (Cornell Multi-grid Coupled Tsunami Model),將海嘯模擬波高結合統計機率概念,主要目的乃建立機率式海嘯危害度分析方法及計算流程,並將其應用於核三廠,欲探討針對馬尼拉海溝 (Manila Trench) 發生地震所造成的海嘯波對核三廠的機率危害度分析,以作為提供防範海嘯之參考依據。本研究目前根據行政院原子能委員會核能研究所提供資料,模擬其中40組模擬情境,將針對馬尼拉海溝機率式海嘯危害度分析方法及流程建立完成。
In recent years, the occurrence of 2004 Indian Ocean Tsunami and 2011 Tohoku-Oki earthquake have raised concerns about the importance of tsunami hazard issues. This study combines the simulated tsunami wave heights with statistical and probabilistic concepts, and includes aleatory and epistemic uncertainties to evaluate tsunami hazards using the numerical model, Cornell Multi-grid Coupled Tsunami model (COMCOT). The main purpose is to establish the probabilistic tsunami hazard analysis (PTHA) method and apply it to the area of the Maanshan nuclear power plant in Taiwan. In order to provide probable-hazard information for engineers to protect the Maanshan nuclear power plant from tsunami hazards, the PTHA method is developed for probable distant tsunami sources along the Manila Trench in present study. Based on the information from the Institute of Nuclear Energy Research, this study simulates 40 simulation scenarios to establish the probabilistic tsunami hazard analysis along the Manila Trench at present.
1.Annaka, T., K. Satake, T. Sakakiyama, K. Yanagisawa, and N. Shuto, (2007). Logic-tree approach for probabilistic tsunami hazard analysis and its applications to the Japanese coasts. Pure Appl. Geophys. 164: p.577-592.
2.Bommer, J.J. and Abrahamson N.A., (2006). Why do modern probabilistic seismic-hazard analyses often lead to increased hazard estimates? Bulletin of the Seismological Society of America, 96: p. 1976-1977.
3.Bommer, J.J., Scherbaum F., H. Bungum, F. Cotton, F. Sabetta, and N.A. Abrahamson, (2005). On the use of logic trees for ground-motion prediction equations in seismic-hazard analysis. Bulletin of the Seismological Society of America, 95(2): p. 377-389.
4.Burbidge, D., P. R. Cummins, R. Mleczko, and H. K. Thio, (2008). A probability tsunami hazard assessment for western Australia. Pure Appl. Geophys. 165: p.2059-2088.
5.Cho, Y.S., (1995). Numerical simulations of tsunami and runup.Doctoral Dissertation, Cornell University.
6.Geist, E.L., and T. Parsons, (2006). Probabilistic analysis of tsunami hazards. Natural Hazards, 37(3): p. 277-314.
7.Gica. E., M. H. Teng, P.L.-F. Liu, V. Titov, and H. Zhou, (2007). Sensitivity analysis of source parameters for earthquake-generated distant tsunamis. J. Waterway, Port, Coastal, Ocean Eng, 133: p.429-441.
8.Gonzalez, F.I., Geist E.L., B. Jaffe, U. Kanoglu, H. Mofjeld, C.E. Synolakis, V.V. Titov, D. Arcas, D. Bellomo, D. Carlton, T. Horning, J. Johnson, J. Newman, T. Parsons, R. Peters, C. Peterson, G. Priest, A. Venturato, J. Weber, F. Wong, and A. Yalciner, (2009). Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources. Journal of Geophysical Research-Oceans, 114.
9.Gonzalez, F.I., LeVeque R.J., and L.M. Adams, (2013). Probabilistic tsunami hazard assessment (PTHA) for Crescent City, CA. University of Washington.
10.Huang, H.-J., (2008). Analysis of the Potential Tsunami Generated by the Earthquakes along the Manila Subduction Zone. National Central University, Taiwan.
11.Horspool, N., I. Pranantyo, J. Griffin, H. Latief, D. H. Natawidjaja, W. Kongko, A. Cipta, B. Bustaman, S.D. Anugrah, and H.K. Thio,(2014). A probabilistic tsunami hazard assessment for Indonesia. Nat. Hazards Earth Syst. Sci., 14: p. 3105-3122
12.Jing, H. H., H. Zhang, D. A. Yuen, and Y. Shi, (2013). A revised evaluation of tsunami hazards along the Chinese coast in view of the Tohoku-Oki earthquake. Pure Appl. Geophys, 170: 129-138.
13.Kirby, S., (2006). Tsunami source characterization for Western Pacific subduction zones. USGS Tsunami Source Working Group.
14.Lin, I. and C.C. Tung, (1982). A preliminary investigation of tsunami hazard. Bulletin of the Seismological Society of America, 72(6): p. 2323-2337.
15.Liu, P.L.-F., S.B. Woo, and Y.S. Cho, (1998). Computer programs for tsunami propagation and inundation. Cornell University.
16.Liu, Y. C., Angela Santos, Shuo M. Wang, Yaolin Shi, Hailing Liu, and David A. Yuen, (2007). Tsunami hazards along Chinese coast from potential earthquake in South China Sea. Physics of the Earth and Planetary Interiors, 163:p. 233-244
17.Mansinha, L., and Smylie D. E., (1971). The displacement fields of inclined faults. Bulletin of the Seismological Society of America, 61 (5): p. 1433-1440.
18.Murata, S., F. Imamura, K. Katoh, Y. Kawata, S. Takahashi, and T. Takayama (2010). Tsunami: To survive from tsunami. Advanced Series on Ocean Engineering, 32.: World Scientific.
19.MLIT (2012). Guide to Determining the Potential Tsunami Inundation, National Institute for Land and Infrastructure Management, MLIT, JAPAN.
20.Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75 (4): p. 1135-1154.
21.PG&E (2010). Methodology for probabilistic tsunami hazard analysis: Trial application for the Diablo Canyon power plant site. Pacific Gas & Electric Company.
22.Rikitake, T. and I. Aida, (1988). Tsunami hazard probability in Japan. Bulletin of the Seismological Society of America. 78(3): p. 1268-1278.
23.Thio, H.K., P. Somerville, and J. Polet, (2010). Probabilistic tsunami hazard in California. : p. 1-331.
24.Wells, D.L. and K.J. Coppersmith, (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America. 84(4): p. 974-1002.
25.Wang, X.M., (2008). Numerical modelling of surface and internal waves over shallow and intermediate water. Doctoral Dissertation, Cornell University.
26.Wang, X.M., (2009). User manual for COMCOT version 1.7.
27.Wang, X.M., and P.L.F. Liu, (2006). An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. Journal of Hydraulic Research, 44(2): p. 147-154.
28.Wang, X.M., and P.L.F. Liu, (2008). Tsunami source region parameter identification and tsunami forecasting. Journal of Earthquake and Tsunami, 2(2): p. 87-106.
29.Wang, X.M., P.L.F. Liu, and A.J. Salisbury, (2009). Tsunami hazard and early warning system in South China Sea. Journal of Asian Earth Sciences, 36(1): p. 2-12.
30.Wu, T. R., Chen P.F., W.T. Tsai, and G.Y. Chen, (2008). Numerical study tsunami excited by 2006 Pingtung earthquake doublet. Terr. Atmos. Ocean. Sci., 19(6): p.705-715.
31.Wu, T. R., Huang H. C., (2009). Modeling tsunami hazards from Manila trench to Taiwan. Journal of Asian Earth Sciences 36: p. 21-28
32.Yoon, Sung B., (2002). Propagation of distant tsunami over slowly varying topography. Journal of Geophysical Research: Oceans 107: p.4.1-4.11
33.Yen, Y.T., and K.F. Ma, (2011). Source-Scaling Relationship for M 4.6-8.9 Earthquakes, Specifically for Earthquakes in the Collision Zone of Taiwan. Bulletin of the Seismological Society of America. 101(2): p. 464-481.
34.鄭錦桐,2002,「台灣地區地震危害度的不確定性分析與參數拆解」,國立中央大學,地球物理研究所博士論文。
35.陳韻如,2008,「2006年屏東外海地震引發海嘯的數值模擬探討」,國立中央大學,水文科學研究所碩士論文。
36.蕭士俊,2014,「海嘯浪高波傳機率模型之建置研究 (103年度期末報告)」,行政院原子能委員會委託研究計畫研究報告。
37.蕭士俊,2015,「海嘯浪高波傳機率模型之建置研究 (104年度期中報告)」,行政院原子能委員會委託研究計畫研究報告。