| 研究生: |
李亮輝 Li, Liang-Hui |
|---|---|
| 論文名稱: |
802.11a WLAN接收機射頻系統規劃與5GHz CMOS 差動LNA/Mixer之設計 RF System Planning of 802.11a WLAN Receiver and 5GHz CMOS Differential LNA/Mixer Circuit Design |
| 指導教授: |
林福林
Lin, Fu-Lin 莊惠如 Chuang, Huey-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 系統規劃 、射頻 、無線區域網路 、混頻器 、低雜訊放大器 、接收機 |
| 外文關鍵詞: | system planning, LNA, RF, mixer, receiver, CMOS, WLAN |
| 相關次數: | 點閱:125 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文第一部份是IEEE 802.11a WLAN接收機射頻系統之設計規劃,首先闡述相位雜訊對正交分頻多工(OFDM)訊號的影響為共模相位雜訊與載波相互干擾,並量化此影響,推得符合IEEE 802.11a規範的接收機振盪器相位雜訊的要求至少為 -95dBc/Hz@100kHz。然後,根據 802.11a 標準內訂定的射頻接收測試(靈敏度、非相鄰/相鄰頻道干擾、與最大功率輸入)與參考HIPERLAN/2的阻隔測試與贅餘響應測試,找出符合802.11a規範接收機的射頻效能參數的要求:NF<10dB,IIP3>-19dBm,IIP2>-4dBm, P1dB>-27dBm,鏡像頻率抑制>61dB,I/Q imbalance<5度,0.5dB。此外,亦對無頻率響應的IIP3串接的公式做修正,推導出有頻率響應的IIP3串接公式。論文所探討的802.11a WLAN射頻接收機之實際設計流程,可提供給射頻接收機系統規劃者與射頻電路設計者很有用的參考。
論文第二部份是選定雙降頻式超外差接收機架構,利用TSMC CMOS 0.18m的製程設計5GHz差動低雜訊放大器與雙平衡式Gilbert cell混波器,低雜訊放大器增益5.2dB,雜訊指數4.9dB,OIP3 4.9dBm,混波器轉換增益-2.2dB,OIP3 2.1dBm,LO-IF隔離度28dB。另外5GHz CMOS電流共用低雜訊放大器的設計方面,量測結果為增益11.2dB,雜訊指數4.5dB,輸入返回損耗10.5dB。
This thesis presents: (1) the study of RF system planning and receiver architecture for IEEE 802.11a WLAN OFDM system, and (2) development of 5GHz CMOS differential LNA/mixer RFICs for a double down-conversion heterodyne receiver. System planning parameters including phase noise, noise figure, IIP3, IIP2 and I/Q imbalance are derived to meet the 802.11a standard requirements. The derived RF parameters to meet 802.11a standard requirements are: phase noise <-95dBc/Hz@100kHz, NF<10dB, IIP3 >-19dBm, IIP2 >-4dBm, selectivity > 23.5, 39.5, and 59dB at offset 20, 40, and 50MHz, I/Q amplitude imbalance<0.5dB, I/Q phase imbalance<5degree, input P1dB(low gain mode) > -27dBm, and image rejection>61dB. The study will be very useful for RF circuit designers.
The 5 GHz CMOS differential LNA/mixer uses a TSMC standard 0.18m CMOS technology. The RF is from 5.725 to 5.825 GHz and the LO (and IF) frequency is a half of the RF for double down-conversion heterodyne receiver. The cascode LNA has 5.2dB gain and 4.9dB noise figure. The current reused LNA has 11.2dB gain, 4.5dB noise figure and 10.5dB input return loss. The doubly-balanced mixer has -2.2dB conversion gain, 2.1dBm OIP3 and 28dB LO-IF isolation.
[1] IEEE Std 802.11a/D7.0-1999, Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer(PHY) specifications: High Speed Physical Layer in the 5GHz Band
[2] R.V. Nee and R. Prasad, OFDM Wireless Multimedia Communication, Artch House, 2000
[3] A. Hajimiri and T.H. Lee,“Oscillator phase noise: a tutorial,” IEEE J. of Solid-State Circuits, vol.32, No. 3, pp. 326 -336, March 2000.
[4] M.S. EL-Tanany, Y. Wu and L. Hazy, “Analytical Modeling and Simulation of Phase Noise Interference in OFDM-Based Digital Television Terrestrial Broadcasting systems, ”IEEE trans. Broadcasting, pp 20-31, March, 2001
[5] P. Vizmulleri, RF Design Guide: Systems, Circuits, and Equations, Artech House, 1995
[6] S. A. Maas, Nonlinear Microwave Circuits, Artech House, 1988
[7] B. Razavi, RF Microelectronics, Prentice Hall, 1997.
[8] IETSI, “Broadband Radio Access Networks (BRAN); HIPERLAN type 2 technical specification; Physical (PHY) layer, “Augest 1999, <DTS/BRAN-0023003>V0.k.
[9] B. J. Dixon, R. D. Pollard and S. Iezekiel, “A discussion of the effects of amplifier back-off in OFDM,” IEEE High Frequency Postgraduate Student Colloquium, pp. 14-19, Sept.1999.
[10] C.Li. Liu, “Impacts of I/Q Imbalance on QPSK-OFDM-QAM Detection,” IEEE Trans. On Consumer Electronics, vol.44, no. 3, pp.984-989, Aug. 1998
[11] B. Razavi, “A 5.2-GHz CMOS Receiver with 62-dB Image Rejection,” IEEE J. Solid-State Circuits, vol.36, no. 5, May 2001
[12] D. K. Shaeffer and T. H. Lee, “A 1.5-V 1.5-GHz CMOS Low Noise Amplifier,” IEEE J. of Solid-State Circuits, vol.32, No. 5, pp. 745-759, May 1997.
[13] A. Rofougaran, J. Y.-C. Chang M. Rofougaran and A. A. Abidi, “A 1GHz CMOS RF Front-End for a Direct-Conversion Wireless Receiver,” IEEE J. of Solid-State Circuits, vol.21, No. 7, pp. 880-889, July 1996.
[14] 林昂生,應用在數位音訊廣播(DAB)接收機L頻帶降頻器之CMOS單晶射頻微波積體電路,國立成功大學電機工程研究所碩士論文,民國九十年。
[15] C. Y. Cha and S. G. Lee , ”A Low Power, High Gain LNA Topology,” Int. Microwave and Millimeter Wave Technology Conf. , pp 420 –423 , 2000
[16] 陳宜隆,5.7GHz UNII頻帶無線通訊之MMIC功率放大器及射頻收發模組之設計製作,國立成功大學電機工程研究所碩士論文,民國九十年。
[17] T. H. Lee, The Design of CMOS Radio-frequency Integrated Circuits, Cambridge University Press, 1998.
[18] S. Y. Liu and H. R. Chuang, “2.4 GHz Transceiver RF Front-end for ISM-Band Digital Wireless Communications, ” Applied Microwave and Wireless, pp. 32-48, June 1998.
[19] A.G. Armanda and M. Calvo, “Phase Noise and Sub-Carrier Spacing Effects on the Performance of an OFDM Communication System, ” IEEE commun. Lett., vol. 2, pp.11-13, Jan. 1998.
[20] G. Gonzalez, Microwave Transistor Amplifier :Analysis and Design, Prentice Hall, 1997.