| 研究生: |
尉遲志豪 Wei-Chin, Jhih-Hao |
|---|---|
| 論文名稱: |
以氟化鋰作為源極/汲極電極緩衝層在五環素薄膜電晶體之應用 Lithium Fluoride as Source/Drain Electrode Buffer Layers for Pentacene-based Thin-Film Transistors Applications |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | PVP 、銦錫氧化物 、有機電激發光二極體 、氟化鋰 、有機薄膜電晶體 、伍環素 |
| 外文關鍵詞: | ITO, LiF, organic light emitting diode, pentacene, PVP, organic thin film transistor |
| 相關次數: | 點閱:129 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有文獻指出,應用超薄的氟化鋰薄膜在有機電激發光二極體之中可以大幅度的改善載子注入的效率。在此論文中,我們引用了此種觀點在五環素薄膜電晶體的主動層與源極/汲極電極之間,期待因為氟化鋰緩衝層的加入可以大幅度的增進電洞注入主動層的效率。
我們使用不同的金屬金(Au)、鉑(Pt)或是鈀(Pd)來當源極/汲極,並嘗試著改變氟化鋰薄膜厚度去得到最佳厚度。由實驗結果發現,不論是何種金屬當源極/汲極,隨著不同的氟化鋰薄膜厚度改變,電晶體的電性表現都會有相對應的改善。當氟化鋰薄膜最佳化厚度為1奈米時,發現其飽和電流和電流開關比等電晶體特性能夠有最明顯程度的改善;此改善的原因可由文獻中推測,因為氟化鋰的加入可以使得載子注入主動層的能障降低,因而造成電晶體電流及載子遷移率的明顯提升。
Lithium fluoride (LiF) thin films have been previously used in organic light-emitting diodes to improve the efficiency of the carrier injection. Based on the concept, it is expected that inserting the LiF buffer layer between the active layer and the source/drain electrode could improve the electrical property of the pentacene-based thin film transistor due to the enhancement of the carrier injection from the source/drain electrode to the active layer.
Au, Pt, and Pd were employed as the source/drain electrodes, and then varied the thickness of LiF to obtain the optimum thickness of the buffer layer. Regardless of the type of metal used for the source/drain electrode, the experimental results showed that the performance of the transistors could be improved significantly by inserting the LiF thin film. The performance of the transistors in terms of the saturation current and on/off current ratio was optimized when the thickness of the LiF buffer layer was at 1.0 nm. This could be attributed to the decreased injection barrier between the source/drain electrode and the active layer, further improving the device performance, including saturation current level and mobility.
[1] M. Pope, C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed., Oxford University Press, Oxford, pp.337-340 (1999)
[2] F. Ebisawa, T. Kurokawa, S. Nara, “Electrical properties of polyacetylene/ polysiloxane interface,” J. Appl. Phys., 54, 3255 (1983)
[3] C. Clarisse, M. T. Riou, M. Gauneau, and M. Le Contellec, “Field-effect transistor with diphthalocyanine thin-film,” Electronics Letters, 24, 674 (1988)
[4] G. Horowitz, D. Fichou, X. Peng, Z. Xu, and F. Garnier, “A field-effect transistor based on conjugated alpha-sexithienyl,” Solid State Communications, 72, 381 (1989)
[5] A. Dodabalapur, L. Torsi, and H. E. Katz, “Organic transistors: Tow-dimensional transport and improved electrical characteristics,” Science, 268, 270 (1995)
[6] G. Horowitz, X. Z. Peng, D. Fichou, and F Garnier, “Organic thin-film transistors using -conjugated oligomers: Influence of the chain length,” Journal of Molecular Electronics, 7, 85 (1991)
[7] D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom, “Pentacene organic thin-film transistors-molecular ordering and mobility,” IEEE Electronics Device Letters, 18, 87 (1997)
[8] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, “Pentacene-based organic thin-film transistors,” IEEE Electronics Device Letters, 44, 1325 (1997)
[9] C. D. Dimitrakopoulos and D. J. Mascaro, “Organic thin film transistor: A review of recent advances,” IBM J. Res. Develop., 45, 11-27 (2001)
[10] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, and R. M. Fleming, “C60 thin-film transistors,” Applied Physics Letters, 67, 121 (1995)
[11] J. G. Laquindanum, H. E. Katz, A. Dodabalapur, and A. J. Lovinger, “n-Channel organic transistor materials based on naphthalene frameworks,” Journal of the American Chemical Society, 118, 11331 (1996)
[12] H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y. Y. Lin ,and A. Dodabalapur, “A soluble and air-stable organic semiconductor with high electron mobility,” Nature, 404, 478 (2000)
[13] H. E. Katz, J. Johnson, A. J. Lovinger, and W. Li, “Naphthalenetetracarboxylic diimide-based n-channel transistor semiconductors: Structural variation and thiol-enhanced gold contacts,” Journal of the American Chemical Society, 122, 7787 (2000)
[14] P. P. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni, and W. Andreoni, “N-type organic thin-film transistor with high field-effect mobility based on a N,N’-dialkyl-3,4,9,10-perylene tetracarloxylic diimide derivative,” Applied Physics Letters, 80, 2517 (2002)
[15] Z. Bao, A. Lovinger, and J. Brown, “New air-stable n-channel organic thin-film transistors,” Journal of the American Chemical Society, 120, 207 (1998)
[16] S. H. Kim, J. H. Lee, Y. S. Yang, and T. Zyung, “Device fabrications of organic thin-film transistors,” Mol. Cryst. Liq. Cryst., 405, 137-152 (2003)
[17] K. Ziemelis, Nature (London) 393, 619 (1998)
[18] B. Crone, A. Dodabalapur, Y.-Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, and W. Li, Nature (London) 403, 521 (2000)
[19] S. F. Nelson, Y.-Y. Lin, D. J. Gundlach, and T. N. Jackson, Appl. Phys. Lett., 72, 1854 (1998)
[20] T. Y. Taur, T. H. Ning, “Fundamentals of Modern VLSI Devices,” Cambridge University Press, Cambridge, p.11 (1998)
[21] V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, M. E. Gershenson, “Intrinsic Charge Transport on the Surface of Organic Semiconductors,” Phys. Rev. Lett., 93, 086602 (2004)
[22] X. L. Chen, Z. Bao, J. H. Schon, A. J. Lovinger, Y. Y. Lin, B. Crone, A. Dodabalapur, “Ion-modulated ambipolar electrical conduction in thin-film transistors based on amorphous conjugated polymers,” Applied Physics Letters, 78, 228-230 (2001)
[23] F. Zhu, X. T. Hao, O. K. Soo, Y. Li, and L. W. Tan, “Polymer electronics systems-polytronics,” Proceedings of the IEEE, 93, no. 8, p. 1400 (2005)
[24] J. M. Shaw, and P. F. Seidler, “Organic electronics: Introduction,” IBM J. Res. Develop., 45, 3 (2001)
[25] J. Zhang, J. Wang, H. Wang, and D. Yan, “Organic thin-film transistors in sandwich configuration,” Applied Physics Letters, 84, 142-144 (2004)
[26] U. Zschieschang, H. Klauk, M. Halik, G. Schmid, and C. Dehm, “Flexible Organic Circuits with Printed Gate Electrodes,” Advanced Materials, 15, 1147-1151 (2003)
[27] G. Horowitz, “Organic field-effect transistors,” Advanced Materials, 10, 365-377 (1998)
[28] G. Horowitz, and M. E. Hajlaoui, “Mobility in polycrystalline oligothiophene field-effect transistors dependent on grain size,” Advanced Materials, 12, 1046-1050 (2000)
[29] Z. Bao, A. Dodabalapur, and A. J. Lovinger, “Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility,” Applied Physics Letters, 69, 4108 (1996)
[30] L. Bürgi, T. J. Richards, R. H. Friend, and H. Sirringhaus, “Close look at charge carrier injection in polymer field-effect transistors,” Journal of Applied Physics, 94, 6129 (2003)
[31] S. J. Kang, M. Noh, D. S. Park, H. J. Kim, C. N. Whang, and C.-H. Chang, “Influence of postannealing on polycrystalline pentacene thin film transistor,” Journal of Applied Physics, 95, 2293 (2004)
[32] J. Lee, J. H. Kim, and S. Im, “Effects of substrate temperature on the device properties of pentacene-based thin film transistors using Al2O3+x gate dielectric,” Journal of Applied Physics, 95, 3733 (2004)
[33] H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber, “High-mobility polymer gate dielectric pentacene thin film transistors,” Journal of Applied Physics, 92, 5259 (2002)
[34] S. H. Jin, C. A. Lee, K. D. Jung, H. Shin, B. G. Park, and J. D. Lee, “Performance improvement of scaled-down top-contact OTFTs by two-step-deposition of pentacene,” IEEE Electron Device Letters, 26, 903 (2005)
[35] H. Ishii, K. Sugiyama, E. Ito, and K. Seki, “Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces,” Advanced Materials, 11, 605 (1999)
[36] F. Garnier, R. Hajlaoui, and M. El Kassmi, “Vertical device architecture by molding of organic-based thin film transistors,” Applied Physics Letters, 73, 1721 (1998)
[37] K. Kudo, K. Shimada, K. Marugami, M. Iizuka, S. Kuniyoshi, and K. Tanaka, “Organic static induction transistor for color sensors,” Synthetic Metals, 102, 900 (1999)
[38] K. Kudo, M. Iizuka, S. Kuniyoshi, and K. Tanaka, “Device characteristics of lateral and vertical type organic field effect transistors,” Thin Solid Films, 393, 362 (2001)
[39] C. S. Kim, S. J. Jo, S. W. Lee, W. J. Kim, and H. K. Baik, “High-k and low-k nanocomposite gate dielectrics for low voltage organic thin film transistors,” Applied Physics Letters, 88, 243515 (2006)
[40] G. Wang, D. Moses, A. J. Heeger, H. M. Zhang, M. Narasimhan, and R. E. Demaray, “Poly(3-hexylthiophene) field-effect transistors with high dielectric constant gate insulator,” Journal of Applied Physics, 95, 316 (2004)
[41] Y. Liang, G. Dong, Y. Hu, L. Wang, and Y. Qiu “Low-voltage pentacene thin-film transistors with Ta2O5 gate insulators and their reversible light-induced threshold voltage shift,” Applied Physics Letters, 86, 132101 (2005)
[42] L. A. Majewski, R. Schroeder, and M. Grell “One Volt Organic Transistor,” Advanced Materials, 17, 192-196 (2005)
[43] L. A. Majewski, R. Schroeder, and M. Grell “Low-voltage, High-Performance Organic Field-Effect Transistors with an Ultra-Thin TiO2 Layer as Gate Insulator,” Advanced Functional Materials, 15, 1017-1022 (2005)
[44] M. J. Powell, “The physics of amorphous-silicon thin film transistors,” IEEE Transactions on Electron Devices, 36, 2753 (1989)
[45] C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters, and D. M. de Leeuw, “Low-cost all-polymer integrated circuits,” Applied Physics Letters, 73, 108 (1998)
[46] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasedaran, W. Wu, and E. P. Woo, “High-resolution inkjet printing of all-polymer transistor circuits,” Science, 290, 2123-2126 (2000)
[47] W. Fix, A. Ullmann, J. Ficker, and W. Clemens, “Fast polymer integrated circuits,” Applied Physics Letters, 81, 1735 (2002)
[48] Z. Bao , “Materials and Fabrication Needs for Low-Cost Organic Transistor Circuits,” Advanced Materials, 12, 227 (2000)
[49] B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, and W. Li, “Large-scale complementary integrated circuits based on organic transistors,” Nature, 403, 521-523 (2000)
[50] H. Sirringhaus, R. J. Wilson, R. H. Friend, M. Inbasekaran, W. Wu, E. P. Woo, M. Grell, and D. D. C. Bradley, “Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase,” Applied Physics Letters, 77, 406 (2000)
[51] T. Minari, T. Nemoto, and S. Isoda, “Temperature and electric-field dependence of the mobility of a single-grain pentacene field-effect transistor,” Journal of Applied Physics, 99, 034506-1 (2006)
[52] G. Horwitz, “Organic field-effect transistors,” Advanced Materials, 10, 365 (1998)
[53] M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest, “Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors,” Applied Physics Letters, 81, 268 (2002)
[54] T. W. Kelley, and C. D. Frisbie, “Gate voltage dependent resistance of a single organic semiconductor grain boundary,” Journal of Physical Chemistry B, 105, 4538 (2001)
[55] G. Horowitz, M. E. Hajlaoui, and R. Hajlaoui, “Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors,” Journal of Applied Physics, 87, 4456 (2000)
[56] Donald A. Neamen, Semiconductor physics and devices basic principles 3rd, McGRAW.HILL, chap. 11, sect. 11.1.1, pp. 450-453 (2003)
[57] X. J. Wang, J. M. Zhao, Y. C. Zhou, X. Z. Wang, S. T. Zhang, Y. Q. Zhan, Z. Xu, H. J. Ding, G. Y. Zhong, H. Z. Shi, Z. H. Xiong, Y. Liu, Z. J. Wang, E. G. Obbard, and X. M. Ding, “Enhancement of electron injection in organic light-emitting devices using an Ag/LiF cathode,” Journal of Applied Physics, 95, 3828 (2004)
[58] D. Gamota, P. Braxis, K. Kalyanasundaram, and J. Zhang, Printed organic and molecular electronics, Kluwer Academic Publishers, chap. 4, sect. 4.2.3.3, pp. 438-440 (2004)
[59] http://www.sigmaaldrich.com/catalog/search/ProductDetail/ALDRICH/
SearchResultsPage, Physical properties of poly(4-vinylphenol) (PVP).
[60] http://www.sigmaaldrich.com/catalog/search/ProductDetail/418552, Physical properties of poly (melamine-co-formaldehyde), methylated (PMF).
[61] http://www.sigmaaldrich.com/catalog/search/ProductDetail/484431, Physical properties of propylene glycol monomethyl ether acetate (PGMEA).
[62] http://www.sigaaldrich.com/catalog/search/ProductDetail/ALDRICH/P1802, Physical properties of pentacene.
[63] F. Zhu, B. Low, K. Zhang, and S. Chua, “Lithium–fluoride-modified indium tin oxide anode for enhanced carrier injection in phenyl-substituted polymer electroluminescent devices,” Applied Physics Letters, 79, 1205 (2001)
[64] http://www.summit-tech.com.tw/msds/msds.htm, Physical properties of Lithium Fluoride (LiF).
[65] http://www.sigaaldrich.com/catalog/search/ProductDetail/ALDRICH/203645, Physical properties of Lithium Fluoride (LiF).
[66] C. C. Yeh, Y. H. Wang, and T. C. Wen, “Pentacene-based organic thin film transistors on plastic substrate coated with liquid phase deposition SiO2,” Master thesis, chap. 3, sect. 3.3, pp.28-29 (2006)
[67] J. M. Zhao, S. T. Zhang, X. J. Wang, Y. Q. Zhan, X. Z. Wang, G. Y. Zhong, Z. J. Wang, X. M. Ding, W. Huang, and X. Y. Hou, “Dual role of LiF as a hole-injection buffer in organic light-emitting diodes,” Appl. Phys. Lett., 84, 15 (2004)
[68] D. Kumaki, T. Umeda, and S. Tokito, “Reducing the contact resistance of bottom-contact pentacene thin-film transistors by employing a MoOX carrier injection layer,” Appl. Phys. Lett., 92, 013301 (2008)
[69] L. S. Hung, L. S. Liao, C. S. Lee, and S. T. Lee, “Sputter deposition of cathodes in organic light emitting diodes,” Journal of Applied Physics, 86, 4607 (2006)
[70] S. D. Wang, T. Minari, T. Miyadera, K. Tsukagoshi, and Y. Aoyagi, “Contact-metal dependent current injection in pentacene thin-film transistors,” Appl. Phys. Lett., 91, 203508 (2007)