簡易檢索 / 詳目顯示

研究生: 劉冠廷
Liu, Guan-Ting
論文名稱: 腦波訊號壓縮系統使用嵌入式零樹小波和適應性差異訊號編碼之演算法
EEG Compression System using embedded zerotree wavelet and adaptive differential pulse code modulation
指導教授: 雷曉方
Lei, Sheau-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 76
中文關鍵詞: 嵌入式零樹小波適應性差異訊號編碼腦波訊號壓縮霍夫曼編碼
外文關鍵詞: Embedded Zero-tree wavelet, EEG Compression, Huffman Coding
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著通訊技術和醫療器材電子化的應用,遠端的醫療監控逐漸成為醫療的趨勢,生理訊號對慢性病的監控尤其重要,長時間的遠端醫療監控的過程中會產生龐大的資料量,造成資料傳輸和儲存上龐大的壓力,因此生理訊號的壓縮便成為重要的議題,本文針對腦波訊號提出一種使用嵌入式零樹小波和適應性差異訊號編碼之壓縮方法,將腦波訊號先透過離散小波轉換成為頻域上的小波係數,再將係數的高頻係數和低頻係數做兩種不同的量化編碼,由於腦波訊號本身為高度隨機的訊號,其不具有任何的相似性,因此量化編碼的部分的目標即是將訊號量化成為相似性較高的訊號,對於較多高頻係數,我們使用嵌入式零樹編碼,可以大大提高訊號的相似性,為整段訊號的主要壓縮效果來源,也因此在係數還原上的誤差會較大,但由於高頻係數在訊號上為對波型的細微描述,在整體訊號還原上的影響較小,對於低頻係數,由於低頻係數在重建時較為重要,若有太大的誤差會造成整段訊號在還原時有很大的影響,因此這邊希望將低頻係數能過做近無損的編碼方式,透過適應性差異訊號編碼雖然無法其在相似的提升上很有限,但在還原時可以達到近無損的目的,透過兩部分的量化編碼提高相似性之後,再做無損的霍夫曼編碼,可以得到很好的效果達到壓縮目的。

    Remote medical monitor has become a tendency as the improvement of the communication technology and electrical medical equipment. Monitoring Biological signals takes an important role in chronic illness diagnosis. It produces a large amount of data to transmit or store when it comes to long-term medical monitoring. Therefore, data compression of biological signals becomes an important problem. This paper proposed an Electroencephalography(EEG) algorithm using Embedded zero-tree wavelet(EZW) encoding and adaptive differential pulse code modulation (DPCM). Because EEG signal is a highly random and non-stationary which make it hard to compress. Therefore, the proposed algorithm is aimed to promote its repeatability. First, we do the discrete wavelet transform analysis on EEG data turning it from time-scale value to frequency-scale coefficients. Second, we have different quantization process on high frequency coefficients and low frequency coefficients separately. For high frequency coefficients, we use EZW which can highly promote the repeatability of the signal. This part is the main source of the compression ratio but has larger distortion. However, it will not cause a big problem in the overall reconstruction. For low frequency coefficients, we use DPCM to quantize because we need its distortion as low as possible. Low frequency coefficients play a major part in overall reconstruction. Therefore, we expect it’s a near-lossless method. At last, we use Huffman coding on the quantized coefficients. Through EZW and DPCM, EEG data have highly promoted its repeatability which make it suitable for Huffman coding.

    中文摘要 I EXTENDED ABSTRACT II 誌謝 X 目錄 XII 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1.1. 研究背景 1 1.2. 腦電圖介紹 3 1.3. 論文章節組織 8 第二章 相關文獻探討回顧及介紹 10 2.1. 資料壓縮介紹 10 2.2. 基底轉換壓縮介紹 11 2.2.1 Bazán-Prieto, Carlos, et al. 基於能量保存之編碼方式[11] 11 2.2.2 Higgins, Garry, et al. 基於JPEG 2000 方式進行壓縮[12] 16 第三章 腦波訊號壓縮演算法 20 3.1. 腦波壓縮還原演算法架構之流程簡介 20 3.2. 腦波壓縮演算法之流程 21 3.2.1 離散小波轉換 22 3.2.2 高低頻係數選擇 24 3.2.3 嵌入式零樹編碼 29 3.2.4 適應性差異訊號編碼 39 3.2.5 霍夫曼編碼 42 3.3. 腦波還原演算法 44 3.3.1 霍夫曼解碼 45 3.3.2 嵌入式零樹解碼 45 3.3.3 適應性差異訊號解碼 46 3.3.4 離散小波還原 47 第四章 模擬與實驗及結果探討 50 4.1 量測指標 50 4.2 模擬結果與比較 51 4.2-1 低頻係數 52 4.2-2 高頻係數 55 4.2.3 整體重建結果 57 4.2.4 文獻比較 64 4.3 功率頻譜分析 66 第五章 結論 73 參考文獻 75

    [1] "內政部統計處 . 人口結構分析. Available: http://www.moi.gov.tw/stat/news_content.aspx?sn=9148."
    [2] 內政部統計處. 主要國家老化指數. Available: http://www.moi.gov.tw/stat/national.aspx
    [3] 吳昌政, 林玗錚, and 孫子傑, "老人關懷零距離-社區/居家遠距照護之發展及應用探討," TAIWANESE GERONTOLOGICAL FORUM, VOLUME17 台灣老年學論壇,第17期, 2013.
    [4] 劉仲鑫 and 曾文彥, "植基於腦波機之無線遠距醫療系統," 華岡工程學報, no. 28, pp. 70-79, 2011.
    [5] 黃蓉蓉, 陳泰瑞, and 陳明昭, "注意力缺陷過動症兒童的長程聽覺誘發波變化," 台灣精神醫學, vol. 17(2), pp. 110-117, 2003.
    [6] 腦電圖,維基百科. 腦電圖訊號種類說明. Available: https://zh.wikipedia.org/wiki/%E8%85%A6%E9%9B%BB%E5%9C%96
    [7] V. L. Towle et al., "The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy," Electroencephalography and clinical neurophysiology, vol. 86, no. 1, pp. 1-6, 1993.
    [8] J. Cox, F. Nolle, H. Fozzard, and G. Oliver, "AZTEC, a preprocessing program for real-time ECG rhythm analysis," IEEE Transactions on Biomedical Engineering, vol. 2, no. BME-15, pp. 128-129, 1968.
    [9] W. C. Mueller, "Arrhythmia detection program for an ambulatory ECG monitor," Biomedical sciences instrumentation, vol. 14, pp. 81-85, 1977.
    [10] J. P. Abenstein and W. J. Tompkins, "A new data-reduction algorithm for real-time ECG analysis," Biomedical Engineering, IEEE Transactions on, no. 1, pp. 43-48, 1982.
    [11] C. Bazán-Prieto, M. Blanco-Velasco, J. Cárdenas-Barrera, and F. Cruz-Roldán, "Retained energy-based coding for EEG signals," Medical engineering & physics, vol. 34, no. 7, pp. 892-899, 2012.
    [12] G. Higgins et al., "EEG compression using JPEG2000: How much loss is too much?," in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, 2010, pp. 614-617: IEEE.
    [13] "小波壓縮,維基百科. CDF 9/7 小波係數 Avaliable : https://zh.wikipedia.org/wiki/%E5%B0%8F%E6%B3%A2%E5%A3%93%E7%B8%AE."
    [14] "多貝西小波,維基百科. 多貝西小波係數. Avaliable : https://zh.wikipedia.org/wiki/%E5%A4%9A%E8%B4%9D%E8%A5%BF%E5%B0%8F%E6%B3%A2."
    [15] J. M. Shapiro, "Embedded image coding using zerotrees of wavelet coefficients," IEEE Transactions on signal processing, vol. 41, no. 12, pp. 3445-3462, 1993.
    [16] W. C. Chu, Speech coding algorithms: foundation and evolution of standardized coders. John Wiley & Sons, 2004.
    [17] D. A. Huffman, "A method for the construction of minimum-redundancy codes," Proceedings of the IRE, vol. 40, no. 9, pp. 1098-1101, 1952.
    [18] A. L. Goldberger et al., "Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals," Circulation, vol. 101, no. 23, pp. e215-e220, 2000.
    [19] A. H. Shoeb, "Application of machine learning to epileptic seizure onset detection and treatment," Massachusetts Institute of Technology, 2009.
    [20] G. Higgins, B. McGinley, N. Walsh, M. Glavin, and E. Jones, "Lossy compression of EEG signals using SPIHT," Electronics letters, vol. 47, no. 18, pp. 1017-1018, 2011.
    [21] D. D. Pawar and A. Nandgaonkar, "EEG Compression Using EZW Technique."
    [22] H. Garry, B. McGinley, E. Jones, and M. Glavin, "An evaluation of the effects of wavelet coefficient quantisation in transform based EEG compression," Computers in biology and medicine, vol. 43, no. 6, pp. 661-669, 2013.
    [23] G. Xu, J. Han, Y. Zou, and X. Zeng, "A 1.5-D multi-channel EEG compression algorithm based on NLSPIHT," IEEE Signal Processing Letters, vol. 22, no. 8, pp. 1118-1122, 2015.
    [24] Y.-S. Chen, H.-Y. Lin, H.-C. Chiu, and H.-P. Ma, "A compressive sensing framework for electromyogram and electroencephalogram," in Medical Measurements and Applications (MeMeA), 2014 IEEE International Symposium on, 2014, pp. 1-6: IEEE.
    [25] J. Carrier, S. Land, D. J. Buysse, D. J. Kupfer, and T. H. Monk, "The effects of age and gender on sleep EEG power spectral density in the middle years of life (ages 20–60 years old)," Psychophysiology, vol. 38, no. 2, pp. 232-242, 2001.
    [26] A. Delorme and S. Makeig, "EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis," Journal of neuroscience methods, vol. 134, no. 1, pp. 9-21, 2004.

    無法下載圖示 校內:2022-07-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE