簡易檢索 / 詳目顯示

研究生: 劉佳峯
Liu, Chia-Feng
論文名稱: 設計並製作共平面波導探針於單細胞阻抗之射頻量測
Design and Fabrication of Coplanar Waveguide Probes for Single Cell Impedance Measurement in Radio Frequency
指導教授: 張凌昇
Jang, Ling-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 59
中文關鍵詞: 細胞阻抗微機電生醫檢測射頻共平面波導
外文關鍵詞: cell impedance, microfluidics, bio-detection, coplanar waveguide
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞進行低頻率範圍之電性阻抗量測時,因電流只會沿著細胞膜外圍流動,加上電雙層與定位之影響,故無法有效與正確得知細胞器內是否發生異常、甚至是細胞核的病變。為了改善低頻量測的缺點,本論文結合了介電泳單一細胞捕捉電極之定位與利用共平面波導技術之量測微電極。在一兆赫到一千兆赫的射頻範圍之間對單一子宮頸癌細胞阻抗進行量測及網路分析。本論文設計雙面電路板與玻璃兩種不同基底之結構來完成單一細胞量測微電極之製作。其中雙面印刷電路板做成外框之固定座,並能夠與網路分析儀之小型射頻同軸連接器接頭進行連接;玻璃基板則利用微機電製程技術製作雙埠之量測微電極,並於量測微電極旁設計介電泳單細胞捕捉之定位電極。之後進行空氣、去離子水、各種濃度之磷酸鹽緩衝溶液及單細胞阻抗測量與驗證。最後,進行分析磷酸鹽緩衝溶液及單細胞的測量,並由測量曲線之結果建立其等效電路模型,其將可以應用於單細胞特性之評估。

    While cell impedance measurement is operated at low frequency, the current passes through outside the cell membrane. In addition, the capacitance effect of double layer and the position of the cell give rise to change the impedance. We can not know that the pathological change inside the cell or the cell nucleus effectively and correctly. In order to overcome these shortcomings of low frequency measurement, this thesis combines a dielectrophoretic trapping technique to position single cells and a coplanar waveguide electrode inside a channel to measure the impedance of a single HeLa cell (human cervical epithelioid carcinoma) in the frequency range of 1 MHz to 1 GHz. In the thesis, two materials (double-sided PCB and glass) are used to achieve the fabrication of the measuring microelectrodes. The double-sided PCB is fabricated as a frame to fasten the glass plate and as the connection interface of a vector network analyzer (VNA) using a SubMiniature-A (SMA) adapter. The microelectrode patterns on the glass substrate are formed using microelectromechanical systems (MEMS) technology. The microelectrodes which are used to position a single cell using dielectrophoretic trapping technique are designed near the measuring microelectrodes. The impedance of the air, de-ionized (DI) water, phosphate buffer saline (PBS) with various concentrations, and a single HeLa cell are measured and verified. Finally, the measured impedance of PBS and a single cell are analyzed. The equivalent circuit models of PBS and a single cell are established by measured curves, and it can be used to estimate properties of the cell.

    中文摘要 I Abstract II ACKNOWLEDGEMENT III CONTENTS IV LIST OF TABLES VI LIST OF FIGURES VII CHAPTER 1 INTRODUCTION 1 1.1 Background and motivation 1 1.2 Introduction to microelectromechanical systems 1 1.3 Dielectrophoresis trapping mechanism 2 1.4 Impedance spectroscopy for cells 2 1.5 Organization of the dissertation 4 CHAPTER 2 THEORY 6 2.1 Dielectrophoresis 6 2.1.1 DEP force 9 2.1.2 Electrothermal effect 10 2.2 Coplanar waveguide 11 2.2.1 Two-port measurement 12 2.2.2 On-chip calibration technique 13 CHAPTER 3 METHODS AND FABRICATION 14 3.1 Glass plate 18 3.2 PCB frame 20 3.3 Combined CPW device 21 3.4 Simulation to DEP effect 22 CHAPTER 4 EXPERIMENTAL METHOD 24 4.1 DEP cell trap 24 4.2 RF experiment 26 4.2.1 Calibration kits 26 4.2.2 Verification of calibration kits 30 4.2.3 Calibration scheme 32 CHAPTER 5 RESULTS AND DISCUSSION 36 5.1 Measurement results 36 5.2 Impedance analysis and modeling 42 CHAPTER 6 CONCLUSIONS 54 REFERENCES 56

    [1] H. W. Wu, X. Z. Lin, S.M. Hwang, G. B. Lee, ” The culture and differentiation of amniotic stem cells using a microfluidic system,” Biomed Microdevices, vol. 11, pp. 869-881, 2009.
    [2] X. Chen, D. F. Cui, C. C. Liu, H. Li, “Microfluidic chip for blood cell separation and collection based on crossflow filtration,” Sensors and Actuators B, vol. 130, pp. 216-221, 2008.
    [3] S. W. Lee, J. Y. Kang, I. H. Lee, S. S. Ryu, S. M. Kwak, K. S. Shin, C. Kim, H. I. Jung, T. S. Kim, “Single-cell assay on CD-like lab chip using centrifugal massive single-cell trap,” Sensors and Actuators A, vol. 143, pp. 64-69, 2008.
    [4] T. Sun, N. G. Green, S. Gawad, H. Morgan, “Analytical electric field and sensitivity analysis for two microfluidic impedance cytometer designs,” IET Nanobiotechnol, vol. 1, no. 5, pp. 69-79, 2007.
    [5] L. S. Jang, M. H. Wang, “Microfluidic device for cell capture and impedance measurement,” Biomed Microdevices, vol. 9, pp. 737-743, 2007.
    [6] Y. Kang, D. Li, S. A. Kalams, J. E. Eid, “DC-Dielectrophoretic separation of biological cells by size,” Biomed Microdevices, vol. 10, pp. 243-249, 2008.
    [7] L. S. Jang, P. H. Huang, K. C. Lan, “Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes,” Biosensors and Bioelectronics, vol. 24, pp. 3637-3644, 2009.
    [8] P. Seriburi, S. McGuire, A. Shastry, K. F. Bohringer, D. R. Meldrum, “Measurement of the Cell-Substrate Separation and the Projected Area of an Individual Adherent Cell Using Electric Cell-Substrate Impedance Sensing,” Analytical Chemistry, vol. 80, pp. 3677-3683, 2008.
    [9] L. S. Jang, H. H. Li, J. Y. Jao, M. K. Chen, C. F. Liu, “Microfluidic devices integrated with an open-ended MEMS probe for single-cell impedance measurement at radio frequencies,” Microfluidics and Nanofluidics, 2009. (Online, SCI)
    [10] M. F. Xiao, Z. Y. Zhou, X Yang, Y Wu, S. F. Liu, “Simulation and experiment analysis for electrical property of cell suspension by micro chip,” Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 1216-1219, January 18-21, 2006, Zhuhai, China.
    [11] A. R. Heiskanen, C. F. Spegel, N. Kostesha, T. Ruzgas, J. Emneus, “Monitoring of Saccharomyces cerevisiae cell proliferation on thiol-modified planar gold microelectrodes using impedance spectroscopy,” Langmuir, vol. 24, pp. 9066-9073, 2008.
    [12] J. Chmiola, G. Yushin, R. K. Dash, E. N. Hoffman, J. E. Fischer, M. W. Barsoum, Y. Gogotsi, “Double-layer capacitance of carbide derived carbons in sulfuric acid,” Electrochemical and Solid-State, vol. 8, pp. A357-A360, 2005.
    [13] T. Sun, N. G. Green, H. Morgan, “Analytical and numerical modeling methods for impedance analysis of single cells on-chip,” Nano, vol. 3(1), pp. 55-63, 2007.
    [14] M. Lohndorf, U. Schlecht, T. M. A. Gronewold, A. Malave, M. Tewes, “Microfabricated high-performance microwave impedance biosensors for detection of aptamer-protein interactions,” Applied Physics Letters., vol. 87, issue 24, id: 243902, 2005.
    [15] M. Olapinski, S. Manus, N. Fertig, F. C. Simmel, “Probing whole cell currents in high-frequency electrical fields: Identification of thermal effects,” biosensors and bioelectronics, vol. 23, pp. 872-878, 2008.
    [16] R. N. Simon, ”Coplanar waveguide circuits, components, and systems,” Wiley, New York, 2001.
    [17] M. Nedil, M. A. HABIB, T. A. Denidni, “CPW-Antenna Arrays with High Efficiency for Wireless Communications at 5.8 GHz,” Vehicular Technology Conference, 2006.
    [18] K. B. Khalid, T. L. Hua, “Development of conductor-backed coplanar waveguide moisture sensor for oil palm fruit,” Measurement Science and Technology, vol. 9, pp. 1191-1195, 1998.
    [19] G. Poesen, J. Stiens, R. Vounckxl, M. Vanden Bossche, “Optically Modulated CPW Line Characterized with a Large Signal Network Analyzer,” Proceedings of Asia-Pacific Microwave Conference, 2007.
    [20] J. W. Wang, M. H. Wang, L. S. Jang, “Effects of electrode geometry and cell location on single-cell impedance measurement,” Biosensors and Bioelectronics, vol. 25, pp. 1271-1276, 2010.
    [21] H. A. Pohl, “The motion and Precipitation of Suspensoids in Divergent Electric Fields,” Journal of Applied Physics, vol. 22, pp. 869-871, 1951.
    [22] D. J. G. Bakewell, M. P. Hughes, J. J. Milner, H. Morgan, “Dielectrophoretic manipulation of avidin and DNA,” Proceedings 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 20, pp. 1079-1082, 1998.
    [23] H. Morgan, M. P. Hughes, N. G. Green, “Separation of Sub-Micron Particles by Dielectrophoresis,” Biochip Journal, vol. 77, pp. 516-525, 1999.
    [24] J. Yang, Y. Huang, X. B. Wang, F. F. Becker, P. R. C. Gascoyne, “Differential analysis of human leukocytes by dielectrophoretic field- flow-fractionation,” Biophysical Journal, vol. 78, no. 5, pp. 2680-2689, 2000.
    [25] H. A. Pohl, K. Pollock, “Electrode geometries for various dielectrophoretic force laws,” Journal of Electrostatics, vol. 5, pp. 337-342, 1978.
    [26] 黃寶樺, ”應用負介電泳效應於微型電極進行單細胞捕捉之研究”,國立成功大學電機工程學系碩士論文,民國97年
    [27] COMSOL MULTIPHYSICS V3.3, http://www.comsol.com/.
    [28] A. Ramos, H. Morgan, N. G. Green, A. Castellanos, “Ac electrokinetics: a review of forces in microelectrode structures,” Journal of Physics D: Applied Physics, vol. 31, pp. 2338-2353, 1998.
    [29] V. Senez, E. Lennon, S. Ostrovidov, T. Yamamoto, H. Fujita, Y. Sakai, T. Fujii, “Integrated 3-D Silicon Electrodes for Electrochemical Sensing in Microfluidic Environments: Application to Single-Cell Characterization,” IEEE sensors journal, vol. 8, no. 5, pp. 548-557, 2008.
    [30] “AppCAD,” Agilent Technologies. (http://www.hp.woodshot.com/)
    [31] S. S. Bedair, I. Wolff, “Fast, accurate and simple approximate analytic formulas for calculating the parameters of supported coplanar waveguides for MMIC's,” IEEE Transactions on Microwave Theory and Techniques, vol. 40, no. 1, pp. 41-48, 1992.
    [32] 李信宏,“探討微機電的開路探針在射頻的細胞阻抗之研究”,國立成功大學電機工程學系碩士論文,民國97年
    [33] “Basic Network Measurements Using the Agilent 8510 Network Analyzer System,” Agilent Technologies, H7215A+140, Rev.5.0, pp. 1.12.1–2.3.10, 1998.
    [34] “Specifying Calibration Standards for the Agilent 8510 Network Analyzer,” Agilent Technologies, Product Note 8510-5B, 2001.
    [35] X. Chen., “Statistical Analysis of Random Errors from Calibration Standards,” IEEE MTT-S, Long Beach, CA, 2005.
    [36] M. K. Chen, C. C. Tai, Y. J. Huang, “Nondestructive Analysis of Interconnection in Two-die BGA Using TDR,” IEEE Transactions on Instrumentation and Measurement, Vol. 55, no. 2, pp. 400-405, 2006.

    無法下載圖示 校內:2012-02-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE