| 研究生: |
羅文佳 Luo, Wen-Chia |
|---|---|
| 論文名稱: |
一個十一位元每秒取樣二千萬次的寬輸入振幅逐漸趨近式類比數位轉換器 An 11-Bit 20-MS/s Wide Input Range Successive-Approximation Analog-to-Digital Converter |
| 指導教授: |
張順志
Chang, Soon-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 類比數位轉換器 、逐漸趨近式 、寬輸入振幅 、可程式增益放大器 、內建振幅衰減技術 |
| 外文關鍵詞: | Analog-to-digital converter, Successive approximation register (SAR), Wide input range, Programmable gain amplifier, Built-in swing attenuation technique |
| 相關次數: | 點閱:107 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個可以應用於高壓系統整合之寬輸入振幅逐漸趨近式類比數位轉換器。
在高壓系統中,類比至數位轉換器面臨到的問題是輸入訊號之振幅和輸入共模電壓超過其可接受的範圍,為了解決這個問題,一般會在類比至數位轉換器之前端加入一個可程式增益放大器(Programmable Gain Amplifier)來調整輸入訊號之振幅以滿足類比至數位轉換器之輸入動態範圍(Input Dynamic Range)。然而,可程式增益放大器由於內部必須使用到運算放大器,並且操作於高電壓,勢必會消耗掉不少的能量。本論文提出名為內建振幅衰減之取樣技術,透過加入一個新式的前端取樣電路並與逐漸趨近式類比數位轉換器做結合,如此一來既能接收寬輸入振幅之訊號且可大量節省了可程式增益放大器所消耗的能量。本論文所提出的內建振幅衰減取樣電路是由開關切換電路(Switched-Capacitor Circuit)所實現且不需要使用到高壓元件,並容易與逐漸趨近式類比數位轉換器做整合。
在本論文中,以台積電180奈米製程研製一個使用內建振幅衰減技術的十一位元逐漸趨近式類比數位轉換器的測試晶片,其電路核心面積約為0.41mm2。此類比至數位轉換器在1.8伏特的電壓供應下操作在二千萬赫茲的取樣頻率(20-MS/s)。實測效能顯示,在1.8伏特電源供電及每秒取樣二千萬次的操作速度下,訊號雜訊比之最大值為63.14分貝,換算之有效位元數為10.2位元,消耗功率為1.82 mW,每次資料所消耗的能量為77.36fJ。
This thesis presents a wide input range successive-approximation register (SAR) analog-to-digital converter (ADC), which can be easily integrated into high-voltage systems.
For a low-supply-voltage ADC integrated in high-voltage systems, one of the major problems is that the swing of the input signal and the input common-mode voltage exceed its acceptable range. A programmable gain amplifier (PGA) is typically used in front of the ADC for adjusting the swing of the input signal level to meet the input dynamic range of ADC. However, it may require a power-hungry operational amplifier (opamp) to implement the PGA, and therefore degrade the power efficiency of the whole system.
This thesis proposes a new sampling technique named as “built-in swing attenuation.” By integrating the new front-end sampling circuit with a SAR ADC, it is able to deal with high voltage input signal without using power-hungry programmable gain amplifier. The front-end sampling circuit is implemented by switched-capacitor (SC) circuit without high voltage devices, which is low power, compact and easy to integrate with the SAR ADC.
The proof-of-concept 11-bit wide input range SAR ADC occupies 0.41mm2 in 180nm CMOS process. It operates at 20-MS/s with 1.8 V supply voltage. The measurement results show that the peak signal-to-noise and distortion ratio (SNDR) is 63.14 dB at 1.8 V supply and 20-MS/s sampling rate. The resultant effective number of bits is 10.2 bits with power consumption of 1.82 mW. The figure-of-merit (FoM) is 77.36 fJ/conversion-step.
[1] B. Murmann, “ADC Performance Survey 1997−2018,” [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.
[2] Analog Devices Inc., The Data Conversion Handbook. W. Keater, ed. Burlington, MA: Newnes, 2005.
[3] M. Gustavsson, J. J. Wikner, and N. N. Tan, CMOS Data Converters for Communications, New York, USA: Kluwer Academic Publishers, 2002.
[4] Data Conversion Handbook, Analog Devices, Inc., Norwood, MA, USA, 2004.
[5] Y. Chiu, B. Nikolic, and P. R. Gray, “Scaling of analog-to-digital converters into ultra-deep-submicron CMOS,” in Proc. IEEE CICC, 2005, pp. 375–382.
[6] J. K. Fiorenza, T. Sepke, P. Holloway, C.G. Sodini, and H.-S. Lee, “Comparator-based switched-capacitor circuits for scaled CMOS technologies,” in IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2658–2668, Dec. 2006.
[7] B. Hershberg, S. Weaver, K. Sobue, S. Takeuchi, K. Hamashita, and U.-K. Moon, “Ring amplifiers for switched capacitor circuits,” in IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 2928–2942, Dec. 2012.
[8] Y. Lim, and M. P. Flynn, “A 100MS/s 10.5b 2.46mW comparator-less pipeline ADC using self-biased ring amplifiers,” in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 202–203.
[9] B. P. Ginsburg, and A. P. Chandrakasan, “An energy-efficient charge recycling approach for a SAR converter with capacitive DAC,” in Proc. IEEE ISCAS, 2005, pp. 184–187.
[10] Y.-K. Chang, C.-S. Wang, and C.-K. Wang, “A 8-bit 500-KS/s low power SAR ADC for bio-medical applications,” in IEEE A-SSCC, 2007, pp. 228–231.
[11] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” in IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731–740, Dec. 2010.
[12] V. Hariprasath, J. Guerber, S.-H. Lee, and U. Moon, “Merged capacitor switching based SAR ADC with highest switching energy-efficiency,” Electron. Lett., vol. 46, no. 9, pp. 620−621, 2010.
[13] J.Guerber, H. Venkatram, T. Oh, and U. Moon, “Enhanced SAR ADC energy efficiency from the early reset merged capacitor switching algorithm,” in Proc. IEEE ISCAS, 2012, pp. 2361-2364.
[14] C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, C.-H. Huang, L. Bu, and C.-C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation,” in IEEE ISSCC Dig. Tech. Papers, 2010, pp. 386–387.
[15] T. Ogawa et al., “SAR ADC algorithm with redundancy,” in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS), Nov. 2008, pp. 268–271.
[16] S.-W. M. Chen et al., “A 6-bit 600-MS/s 5.3mW asynchronous ADC in 0.13 µm CMOS,” in IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 26692680, Dec. 2006.
[17] Hung-Yen Tai, et al., “A 0.85fJ/conversion-step 10b 200KS/s Subranging SAR ADC in 40nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2014, pp. 196−198.
[18] C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, and C. M. Huang, “A 1V 11fJ/Conversion-step 10bit 10 MS/s Asynchronous SAR-ADC in 0.18μm CMOS,” in Proc. IEEE Symp. VLSI Circuits, Jun. 2010, pp. 241−242.
[19] Y. Zhu, C.-H. Chan, U-F. Chio, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti, “A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS,” in IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1111–1121, Jun. 2010.
[20] S. Jiang et al., “An 8-bit 200-Msample/s pipelined ADC with mixed-mode front-end S/H circuit,” in IEEE Trans. Circuits Syst. I, vol. 55, pp.1430–1440, Jun. 2008.
[21] G.-Y. Huang et al., “10-bit 30-MS/s SAR ADC using a switchback switching method,” in IEEE Transactions on VLSI Systems, vol. 21, no. 3, pp.584-588, Mar. 2013.
[22] M. J. Mcnutt et al., “Systematic capacitance matching errors and corrective layout procedures,” in IEEE J. Solid-State Circuits, vol. 29, pp. 611–616, May 1994.
[23] J. Liu, S. Dong et al., “Symmetry constraint based on mismatch analysis for analog layout in SOI technology,” in Proc. IEEE/ACM Asia South Pacific Design Autom. Conf. (ASP-DAC), Mar. 2008, pp. 772–775.
[24] M. J. Mcnutt et al., “Systematic capacitance matching errors and corrective layout procedures,” in IEEE J. Solid-State Circuits, vol. 29, pp. 611–616, May 1994.
[25] C.-W. Lin et al., “Mismatch-aware common-centroid placement for arbitrary-ratio capacitor array considering dummy capacitors,” in IEEE Trans. Comput. Aided Design Integr. Circuits Syst., vol. 31, no. 12, pp. 17891802, Dec. 2012.
[26] P. J. A. Harpe et al., “A 26 µW 8 bit 10 MS/s asynchronous SAR ADC for low energy radios,” in IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 15851595, Jul. 2011.
[27] G.-Y. Huang et al., “A 10 b 200 MS/s 0.82 mW SAR ADC in 40 nm CMOS,” in Proc. IEEE A-SSCC, Nov. 2013. pp. 289–292.
[28] X.-L. Huang et al., “An MCT-based bit-weight extraction technique for embedded SAR ADC testing and calibration,” J. Electron. Testing: Theory and Applicat., vol. 28, pp. 705–722, Aug. 2012.
[29] G.-Y. Huang et al., “A 1-μW 10-bit 200-kS/s SAR ADC with a bypass window for biomedical applications,” in IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2783–2795, Nov. 2012.
[30] Y.-H. Chung, M.-H. Wu, H.-S. Li, “A 12-bit 8.47-fJ/Conversion-Step Capacitor-Swapping SAR ADC in 110-nm CMOS,” in IEEE Trans. Circuits Systems, vol. 62, no. 1, pp. 10–18, Jan. 2015.
[31] C.-W. Hsu et al., “ A 12-b 40-MS/s calibration-free SAR ADC,” in IEEE Trans. Circuits Systems, vol. 65, no. 3, pp. 881–890, Dec. 2017.
[32] C.-P. Huang et al., “ Analysis of nonideal behaviors based on INL/DNL plots for SAR ADCs,” in IEEE Trans. Instrum. Meas., vol. 65, no. 8, pp. 1804–1817, Aug. 2016.
[33] J. Kuppambatti et al., “Current reference pre-charging techniques for low-power zero-crossing pipeline-SAR ADCs,” in IEEE J. Solid-State Circuits, vol. 49, no. 3, pp. 683–694, Mar. 2014.
[34] C.-H. Chan et al., “60-dB SNDR 100-MS/s SAR ADCs with threshold reconfigurable reference error calibration,” in IEEE J. Solid-State Circuits, vol. 52, no. 10, pp. 2576–2588, Oct. 2017.
[35] W. Liu et al., “A 12b 22.5/45MS/s 3.0mW 0.059 mm2 CMOS SAR ADC achieving over 90 dB SFDR,” in IEEE ISSCC Dig. Tech. Papers, 2010, pp. 380−381.
[36] W. Liu et al., “A 12-bit 50-MS/s 3.3 mW SAR ADC with background digital calibration,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2012, pp. 1–4.
[37] H.-Y. Tai et al., “A 3.2 fJ/c.-s. 0.35 V 10 b 100 kS/s SAR ADC in 90 nm CMOS,” in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, Jun. 2012, pp. 92–93.
[38] C. C. Lee et al., “A SAR-assisted two-stage pipeline ADC,” in IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 859–869, Feb. 2011.
[39] S. Devarajan et al., “A 16b 125 MS/s 385 mW 78.7 dB SNR CMOS pipeline ADC,” in IEEE ISSCC Dig. Tech. Papers, 2009, pp. 86−87.
[40] Y. Lim et al., “A 1 mW 71.5 dB SNDR 50 MS/s 13 bit fully differential ring amplifier based SAR-assisted pipeline ADC,” in IEEE J. Solid-State Circuits, vol. 50, no. 12, pp. 2901–2911, Sep. 2015.
[41] Analog Devices Inc., MT-072 Tutorial precision variable gain amplifier (VGAs).
[42] X. Fan et al., “Analysis and Design of Low-Distortion CMOS Source Followers,” in IEEE Trans. Circuits Systems, vol. 52, no. 8, pp. 1489–1501, Aug. 2005.
[43] Mohd Asmawi MOHAMED ZIN et al., “A High-speed CMOS Track/Hold Circuit,” in IEEE ICECS, vol. 3, pp. 1709-1712 Sep. 1999.
[44] H.-G. Wei et al., “A rapid power-switchable track-and-hold amplifier in 90-nm CMOS,” in IEEE Trans. Circuits and Systems-II, vol.57, no. 1, pp. 16−20, Jan. 2010.
[45] Marcel Veloso Campos et al., “New 12-bit source-follower track-and-hold circuit suitable for high-speed applications,” in VLSI and System-on-Chip (VLSI-SoC), 2011 IEEE/IFIP 19th International Conference on, pp. 82-85, Oct. 2011.
[46] Thomas Paul Kearney, “Programmable Input Range ADC,” Analog Devices Inc., U.S. patent no. 2006/0001563 A1, Jan 2006.
[47] J.-H. Tsai et al., ‘‘A 1-V, 8b, 40MS/s, 113μW Charge-Recycling SAR ADC with a 14μW Asynchronous Controller,’’ in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, June 2011, pp. 264–265.
[48] C.-H. Kuo, “A 10-bit 120-MS/s SAR ADC with compact architecture and noise suppression technique,” M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, 2014.
[49] M. Dessouky et al., “Input switch configuration suitable for rail-to-rail operation of switched opamp circuits,” Electron. Lett., vol. 35, pp. 8–10, Jan. 1999.
[50] G. Huang, and P. Lin, “A fast bootstrapped switch for high-speed high-resolution A/D converter,” in IEEE APCCAS, 2010, pp. 382–385.
[51] D. Schinkel et al., “A double-tail latch-type voltage sense amplifier with 18 ps setup + hold time,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2007, pp. 314315.
[52] M. van Elzakker et al., “A 1.9 µW 4.4 fJ/conversion-step 10 b 1 MS/s charge
-redistribution ADC,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2008, pp. 244245.
[53] M. Miyahara et al., “A low-noise self-calibrating dynamic comparator for high-speed ADCs,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2008, pp. 269272.
[54] H. J. Jeon et al., “A CMOS low-power low-offset and high-speed fully dynamic latched comparator,” in Proc. IEEE Int. SOC Conf., 2010, pp. 285–288.
[55] H. Zumbahlen, Staying well grounded, Analog Dialogue 46-06 June 2012.
[56] Texas Instruments Inc., datasheet of CD74HC4066.
[57] C.-T. Chiang et al., “A 12-bit 50 MS/s pipelined ADC with power optimized strategy for ultrasonic imaging instruments,” in IEEE Instrumentation and Measurement Technology Conference, May 2012, pp. 1-4.
[58] W.-H. Tsai et al., “A 10-bit 50-MS/s SAR ADC for dual-voltage domain portable systems,” in Proc. IEEE ISCAS, 2015, pp. 2425-2428.
[59] J.-W. Nam et al., “An embedded passive gain technique for asynchronous SAR ADC achieving 10.2 ENOB 1.36-mW at 95-MS/s in 65 nm CMOS,” in IEEE Trans. Circuits Systems, vol. 63, no. 10, pp. 1628–1638, Jul. 2016.
[60] A. T. Huynh et al., “Design and implementation of an 11-bit 50-MS/s split SAR ADC in 65nm CMOS,” in Proc. IEEE ISCAS, 2014, pp. 305-308.
[61] Y. -Z. Lin et al., “A 0.9-V 11-bit 25-MS/s binary-search SAR ADC in 90-nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2011, pp. 14-16.