簡易檢索 / 詳目顯示

研究生: 王柏閔
Wang, Po-Min
論文名稱: 24 GHz前端電路及2.4 GHz電流再利用式壓控振盪器之設計
Designs of 24 GHz Front-end and 2.4 GHz Current-reused Voltage-controlled Oscillator
指導教授: 黃尊禧
Huang, T.-H.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 100
中文關鍵詞: 雙平衡式吉伯特細胞混頻器射頻接收機前端電路電流再利用式壓控振盪器低雜訊放大器
外文關鍵詞: double-balanced Gilbert-cell mixer, front-end, current-reused voltage-controlled oscillator, low-noise amplifier
相關次數: 點閱:162下載:55
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為探討應用於24 GHz與2.4 GHz 雙頻共存接收機之子電路設計,其中可依操作頻率分為兩個部分:第一部分為24-28 GHz之雙平衡式吉伯特細胞混頻器與24 GHz接收機前端電路;第二部分為2.4 GHz電流再利用式壓控振盪器。所設計之電路皆使用TSMC 0.18 m 製程模擬與實現。
    24-28 GHz雙平衡式吉伯特細混頻器輸入射頻訊號頻率為24-28 GHz,透過本地振盪源將射頻訊號降頻至2.4 GHz頻帶,以傳遞置後端2.4 GHz系統使用。此子電路使用inductive peaking技術,在轉導級與切換級之間插入電感,拓展頻寬,達到高頻操作之目的。根據量測結果,於操作頻帶之間轉換增益皆大於4.3 dB,並且P1dB達到-13 dBm,IIP3為-6 dBm,消耗的功率為18.9 mW。
    24 GHz接收機前端電路使用三級低雜訊放大器串接,提升整體增益並且降低雜訊指數,提高整體接收機之靈敏度,第三級之低雜訊放大器並對線性度做最佳化,改善線性度。混頻器使用單平衡式吉伯特細胞混頻器,達到低功耗之設計目標。根據量測結果,整體轉換增益達到10.5 dB;雜訊指數11.8 dB;P1dB為-25 dBm;IIP3達到-19 dBm,整體消耗功率為32.5 mW。
    2.4 GHz壓控振盪器使用電流再利用式架構之特性,達到低功耗之設計目標,並且改善輸出擺幅不平衡之現象。根據量測結果,壓控振盪器核心消耗功率為1.8 mW,可調頻率範圍為2.27-2.79 GHz,達到20.5%可調範圍,相位雜訊在2.4 GHz偏移1 MHz處為-118 dBc/Hz,可調頻率範圍內之輸出功率皆大於-7.3 dBm。

    This thesis presents the subcircuit design of the 2.4/24 GHz dual-band coexistence sensor receiver RF front-end, which can be divided into two topics by the operation frequency. The first topic is the design of 24-28 GHz double-balanced Gilbert-cell mixer and 24 GHz front-end. The second topic is the design of 2.4 GHz current-reused voltage-controlled oscillator. The circuits in this thesis are simulated and implemented in TSMC 0.18 m process.
    The proposed 24-28 GHz double-balanced Gilbert-cell mixer applies a 24-28 GHz RF input signal, which is downconverted by a LO signal to 2.4 GHz band and delivers to the subsequent 2.4 GHz system. This circuit adopts inductive peaking technique, inserting an inductor between the transconductance and switch stage, to extend the bandwidth and improve the performance of high frequency operation. The proposed mixer provides a conversion gain in the desired band greater than 4.3 dB with the P1dB and IIP3 of -13 and -6 dBm, while drawing the 18.9 mW from a 1.8 V supply.
    The proposed 24 GHz front-end utilizes the three-stage low-noise amplifier to enhance the overall gain, diminish the noise figure and improve the sensitivity of the front-end. The mixer in the proposed front-end employs a single-balanced mixer to lower power consumption. The proposed front-end achieves a conversion gain of 10.5 dB with the noise figure of 11.8 dB and provides a P1dB and IIP3 of -25 and -19 dBm, while taking the 32.5 mW from a 1.8 V supply.
    The proposed 2.4 GHz current-reused voltage-controlled oscillator takes advantage of its topology and improves the unbalanced voltage swing, exhibiting an extreme low power consumption and a low unbalance ratio. The proposed voltage-controlled oscillator achieves -118 dBc/Hz at 1 MHz offset with a tuning range of 2.27-2.79 GHz (20%), drawing only 1.8mW from a 1.5 V supply; furthermore, the output power is greater than -7.3 dBm in the desired band.

    Chapter 1 Introduction 1.1 Motivation 1 1.2 Literature Review 3 1.3 Thesis Organization 5 Chapter 2 24 GHz CMOS Front-end 2.1 Introduction and Key Design Performance Considerations 6 2.1.1 Key design performance considerations of LNA 6 2.1.2 Basic LNA topologies 18 2.1.3 Key design performance considerations of mixer 23 2.1.4 Basic mixer Topologies 27 2.2 Design Example: A 24-28 GHz Double-balanced Gilbert-cell Mixer 29 2.2.1 Design of a 24-28 GHz double-balanced Gilbert-cell mixer 30 2.2.2 Simulation results 34 2.3 Design Example: A 24 GHz Front-end 37 2.3.1 Design of a 24 GHz front-end 38 2.3.2 Simulation results 43 Chapter 3 2.4 GHz Current-reused VCO 3.1 Introduction and Key Design Performance Considerations 51 3.1.1 Introduction 51 3.1.2 Key design performance considerations 54 3.1.3 Basic LC-VCO topologies 58 3.1.4 Basic ring-VCO topologies 60 3.1.5 Current-reused LC-VCO topologies 62 3.2 Design Example: A 2.4 GHz Current-reused VCO 64 3.2.1 Design of a 2.4 GHz current-reused VCO 64 3.2.2 Simulation Results 66 Chapter 4 Measurement Results and Discussion 4.1 A 24-28 GHz Double-balanced Gilbert-cell Mixer 68 4.1.1 Measurement environment setup 68 4.1.2 Measurement results 71 4.2 A 24 GHz Front-end 78 4.2.1 Measurement environment setup 78 4.2.2 Measurement results 81 4.3 A 2.4 GHz Current-reused VCO 85 4.3.1 Measurement environment setup 85 4.3.2 Measurement results 86 Chapter 5 Conclusion 5.1 Conclusion 92 5.2 Future work 93 References 95

    [1] 5G spectrum recommendations - April 2017. Available on: http://www.5gamericas.org/files/9114/9324/1786/5GA_5G_Spectrum_Recommendations_2017_FINAL.pdf
    [2] Sheng-Fuh R. Chang, Wen-Lin Chen, et al., “A dual-band RF Transceiver for multistandard WLAN applications,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp. 1048-1055, Mar. 2005.
    [3] Hung-Sheng Hsu, Qiu-Yue Duan, Yu-Te Liao, “A low power 2.4/5.2 GHz concurrent receiver using current-reused architecture,” IEEE International Symposium on Circuits and Systems, 2016, pp. 1398-1401.
    [4] B. Gilbert, "The MICROMIXER: a highly linear variant of the Gilbert mixer using a bisymmetric Class-AB input stage," in IEEE Journal of Solid-State Circuits, vol. 32, no. 9, pp. 1412-1423, Sept. 1997.
    [5] S. S. K. Ho and C. E. Saavedra, "A CMOS Broadband Low-Noise Mixer With Noise Cancellation," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 5, pp. 1126-1132, May 2010.
    [6] Y. Chen, H. Hsieh and L. Lu, "A 24-GHz Receiver Frontend With an LO Signal Generator in 0.18-m CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 5, pp. 1043-1051, May 2008.
    [7] Xiang Guan and A. Hajimiri, "A 24-GHz CMOS front-end," in IEEE Journal of Solid-State Circuits, vol. 39, no. 2, pp. 368-373, Feb. 2004.
    [8] Seok-Ju Yun, So-Bong Shin, Hyung-Chul Choi and Sang-Gug Lee, "A 1mW current-reuse CMOS differential LC-VCO with low phase noise," ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005., San Francisco, CA, 2005, pp. 540-616 Vol. 1.
    [9] W. Ying, P. Qin, J. Jin and T. Mo, "A 1mW 5GHz current reuse CMOS VCO with low phase noise and balanced differential outputs," 2011 International Symposium on Integrated Circuits, Singapore, 2011, pp. 543-546.
    [10] Z. Wang, H. S. Savci, J. Griggs and N. S. Dogan, "1-V Ultra-Low-Power CMOS LC VCO with Dynamic Body Biasing," 2007 International Symposium on Signals, Circuits and Systems, Iasi, 2007, pp. 1-4.
    [11] M. Wei, S. Chang and S. Huang, "An Amplitude-Balanced Current-Reused CMOS VCO Using Spontaneous Transconductance Match Technique," in IEEE Microwave and Wireless Components Letters, vol. 19, no. 6, pp. 395-397, June 2009.
    [12] D. K. Shaeffer and T. H. Lee, "A 1.5-V, 1.5-GHz CMOS low noise amplifier," in IEEE Journal of Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May 1997.
    [13] B. Razavi, RF Microelectronics. Englewood Cliffs, NJ: Prentice-Hall,1998.
    [14] A. van der Ziel, Noise in Solid State Devices and Circuits. New York: Wiley, 1986.
    [15] D. Woods, "Reappraisal of the unconditional stability criteria for active 2-port networks in terms of S parameters," in IEEE Transactions on Circuits and Systems, vol. 23, no. 2, pp. 73-81, February 1976.
    [16] M. L. Edwards and J. H. Sinsky, "A new criterion for linear 2-port stability using a single geometrically derived parameter," in IEEE Transactions on Microwave Theory and Techniques, vol. 40, no. 12, pp. 2303-2311, Dec. 1992.
    [17] T. Lee. The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge
    University Press, Cambridge, UK, 1998.
    [18] J. Zhan and S. Taylor, “A 5-GHz Resistive Feedback CMOS LNA for Low-Cost
    Multi-Standard Applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech.
    Papers, San Francisco, CA, Feb. 2006, pp. 721-730.
    [19] B. Perumana, J. Zhan, S. Taylor, B. Carlton, and J. Laskar, “Resistive Feedback Low-Noise Amplifiers for Multiband Applications,” IEEE Transactions on Microwave Theory and Techniques,” vol. 56, no. 5, May 2008, pp 1218-1225.
    [20] H. Chen, D. Chang, Y. Juang and S. Lu, "A Compact Wideband CMOS Low-Noise Amplifier Using Shunt Resistive-Feedback and Series Inductive-Peaking Techniques," in IEEE Microwave and Wireless Components Letters, vol. 17, no. 8, pp. 616-618, Aug. 2007.
    [21] Y. E. Chen and Y. Huang, "Development of Integrated Broad-Band CMOS Low-Noise Amplifiers," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 10, pp. 2120-2127, Oct. 2007.
    [22] N. Poobuapheun, “LNA and mixer designs for multi-band receiver front-ends,” Ph.D. dissertation, Dept. Elect. Eng. Comp. Sci., Univ. California, Berkeley, CA, USA, 2009
    [23] Keysight. Conversion loss. Retrieved January 11, 2021, from http://na.support.keysight.com/pna/help/latest/FreqOffset/Conversion_Loss.htm
    [24] 張盛富、張嘉展,無線通訊射頻晶片模組-射頻晶片篇(第二版),全華圖書,中華
    民國一百零四年三月。
    [25] Prof. M. H. Perrott, Lecture Notes, Dept. of EECS, MIT. [Online] Available :
    http://www.cppsim.com/lectures.html
    [26] B. Gilbert, "The MICROMIXER: a highly linear variant of the Gilbert mixer using a bisymmetric Class-AB input stage," IEEE Journal of Solid-State Circuits, vol. 32, no. 9, pp. 1412-1423, Sept. 1997.
    [27] Wei Guo and Daquan Huang, "The noise and linearity optimization for a 1.9-GHz CMOS low noise amplifier," Proceedings. IEEE Asia-Pacific Conference on ASIC,, Taipei, Taiwan, 2002, pp. 253-257.
    [28] P. Sivonen, A. Vilander and A. Parssinen, "A gain stabilization technique for tuned RF low-noise amplifiers," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 9, pp. 1702-1707, Sept. 2004.
    [29] D. B. Leeson, "A simple model of feedback oscillator noise spectrum," in Proceedings of the IEEE, vol. 54, no. 2, pp. 329-330, Feb. 1966.
    [30] A. Hajimiri and T. H. Lee, "Design issues in CMOS differential LC oscillators," in IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999.
    [31] W. S. T. Yan and H. C. Luong, "A 900-MHz CMOS low-phase-noise voltage-controlled ring oscillator," in IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 48, no. 2, pp. 216-221, Feb. 2001.
    [32] Y. Chang, C. Huang and Y. Chiang, "A 24GHz down-conversion mixer with low noise and high gain," 2012 7th European Microwave Integrated Circuit Conference, Amsterdam, 2012, pp. 285-288.
    [33] D. Ahn, D.-W. Kim, and S. Hong, “A K-band high-gain downconversion mixer in 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 227–229, 2009.
    [34] H. Bae, C. S. Cho, J. W. Lee and J. Kim, "A 24GHz dual-gate mixer using sub-harmonic in 0.18µm CMOS technology," 2009 Asia Pacific Microwave Conference, Singapore, 2009, pp. 1739-1742.
    [35] A. Verma, Li Gao, K. K. O and J. Lin, "A K-band down-conversion mixer with 1.4-GHz bandwidth in 0.13-μm CMOS technology," in IEEE Microwave and Wireless Components Letters, vol. 15, no. 8, pp. 493-495, Aug. 2005.
    [36] H. Lin, Y. Lin and H. Wang, "A High Linearity 24-GHz Down-Conversion Mixer Using Distributed Derivative Superposition Technique in 0.18-m CMOS Process," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 1, pp. 49-51, Jan. 2018.
    [37] D. Lin, K. Kao and K. Lin, "A K-Band High-Gain Linear CMOS Mixer with Current-Bleeding Neutralization Technique," 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, 2018, pp. 267-269.
    [38] T. T. Nguyen, K. Fujii and A. Pham, "A 7–42 GHz dual-mode reconfigurable mixer with an integrated active IF balun," 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, 2017, pp. 2018-2021.
    [39] T. T. Nguyen, A. Riddle, K. Fujii and A. Pham, "Development of Wideband and High IIP3 Millimeter-Wave Mixers," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 8, pp. 3071-3079, Aug. 2017.
    [40] Chen-Yuan Chu, Chien-Cheng Wei, Hui-Chen Hsu, Shu-Hau Feng and Wu-Shiung Feng, "A 24GHz low-power CMOS receiver design," 2008 IEEE International Symposium on Circuits and Systems, Seattle, WA, 2008, pp. 980-983.
    [41] Tiku Yu and G. M. Rebeiz, "A 24 GHz 4-channel phased-array receiver in 0.13 μm CMOS," 2008 IEEE Radio Frequency Integrated Circuits Symposium, Atlanta, GA, 2008, pp. 361-364.
    [42] J. Dang, B. Meinerzhagen, S. Brückner, J. Schoebel, A. Noculak and R. Negra, "A low noise figure K-band receiver in 130 nm CMOS," 2018 11th German Microwave Conference (GeMiC), Freiburg, 2018, pp. 243-246.
    [43] Y. Ding, S. Vehring, D. Maurath, F. Gerfers and G. Boeck, "A 24 GHz Zero-IF IQ-receiver using low-noise quadrature signal generation," 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpar, 2017, pp. 1226-1229.
    [44] L. Gao, Q. Ma and G. M. Rebeiz, "A 20–44-GHz Image-Rejection Receiver With >75-dB Image-Rejection Ratio in 22-nm CMOS FD-SOI for 5G Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 7, pp. 2823-2832, July 2020.
    [45] Y. Yeh, B. Walker, E. Balboni and B. Floyd, "A 28-GHz Phased-Array Receiver Front End With Dual-Vector Distributed Beamforming," in IEEE Journal of Solid-State Circuits, vol. 52, no. 5, pp. 1230-1244, May 2017.
    [46] M. Taghivand, M. Ghahramani and M. P. Flynn, "A low voltage sub 300μW 2.5GHz current reuse VCO," 2012 IEEE Asian Solid State Circuits Conference (A-SSCC), Kobe, 2012, pp. 369-372.
    [47] T. Siriburanon, W. Deng, K. Okada and A. Matsuzawa, "A current-reuse Class-C LC-VCO with an adaptive bias scheme," 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Seattle, WA, 2013, pp. 35-38.
    [48] K. Cheng, S. Chang and Y. Huang, "Low-Power and Low-Phase-Noise $G_{m}$ -Enhanced Current-Reuse Differential Colpitts VCO," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 5, pp. 733-737, May 2019.
    [49] B. Seow, M. Lin, T. Huang and H. Chuang, "5-GHz gm-boosted transformer cross-coupled current-reused colpitts VCO," 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, 2016, pp. 1-3.
    [50] X. Ding, J. Wu and C. Chen, "A Low-Power 0.6-V Quadrature VCO With a Coupling Current Reuse Technique," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 2, pp. 202-206, Feb. 2019.
    [51] C. -W. Lim and T. -Y. Yun, "Gm- and Swing-Enhanced Colpitts VCO by Optimization of Capacitance Ratio," in IEEE Microwave and Wireless Components Letters, vol. 30, no. 10, pp. 977-980, Oct. 2020.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE