簡易檢索 / 詳目顯示

研究生: 陳俊成
Chen, Chun-Cheng
論文名稱: 應用於奈米磁粒之半橋串聯諧振式雙頻耦合熱療加熱系統
A Half-Bridge Series-Resonant Type Frequency-Couple Heating System for Magnetic Nanoparticle Thermotherapy
指導教授: 戴政祺
Tai, Cheng-Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 65
中文關鍵詞: 奈米磁粒電磁熱療半橋串聯諧振
外文關鍵詞: Half-bridge series-resonant type, Magnetic nanoparticle, Thermotherapy
相關次數: 點閱:135下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 所謂奈米磁粒子電磁熱療,乃是利用奈米級的氧化鐵顆粒做為載體,當其包覆脂質或藥物後,因為奈米磁粒本身的材料特性將會對特定癌細胞產生依附作用,再以外加的電磁加熱系統所輻射出的交變磁場,使奈米磁粒吸收磁能後轉成功率熱損而提升溫度,此高溫能抑制癌細胞的成長並且使附載在奈米磁粒上的藥物成功地發揮其療效,達到治療及殺死癌細胞的目的。由於任何濃度的奈米磁粒在固定的交變磁場作用下最後都將趨於熱飽和的狀態,即加熱溫度達某一溫度值之後就不易繼續升溫的特性,所以希望能藉由外加頻率擾動訊號的方式將熱飽和溫度向上提升。本研究設計了一套微處理機控制的可變頻率弦波擾動訊號產生系統,在系統的設計上運用了半橋串聯諧振式電路為主要之觀念構成系統主體,在已知功率損耗和頻率及磁場的關係下,整體實驗將架構在固定的交變磁場情況下進行,觀察奈米磁粒受到固定的交變磁場作用下分別載入不同的頻率擾動訊號時的升溫情形。實驗結果顯示當載入擾動訊號時奈米磁粒熱飽和溫度可以向上提升1.2~2.2 ℃。最後並探討不同濃度的奈米磁粒於不同操作頻率下的升溫效果。

    The main idea of magnetic nanoparticles electromagnetic thermotherapy is to use ferric oxide nanoparticles as carriers, which are packaged with lipid or drug to attach to specific cancer cells. The temperature of magnetic particles is risen by absorbing magnetic energy from external AC magnetic fields. The heat can make the good curative effects to cancer cells from drugs-bearing magnetic particles. And the high temperature can inhibit the growing of cancer cells. In order to achieve the goal of killing cancer cells using the AC magnetic field, we designed a heating system to generate magnetic field. The heating system adopts the half-bridge series-resonant circuit as the core scheme of the heating system. Since any density of Fe3O4 will finally reach hot saturation condition in the fixed magnetic field, therefore affiliation is created to disturb the signal for temperature upward promotion. The adjustable frequency of the sine wave disturbance system is controlled via a microprocessor. Since the relation between power loss, frequency and magnetic field is known, all the experiments are carried out under fixed alternating magnetic field situation. Under fixed alternating magnetic field the effect of perturbation signal with different frequency on magnetic nanoparticles is observed. The experimental results show that the perturbation signal further promote the temperature of magnetic nanoparticles by 1.2 ~ 2.2 ℃. Finally, we will discuss the heating effect of different density magnetic nanoparticles under different operating frequency.

    摘要.................................I ABSTRACT ............................II 誌謝.................................IV 目錄.................................V 表目錄...............................VIII 圖目錄...............................IX 第一章 緒論..........................1 1.1研究背景..........................1 1.2腫瘤熱療的類型....................1 1.3腫瘤電磁熱療法相關研究之發展概況..2 1.4研究方式..........................5 1.5全文概述..........................5 第二章 奈米磁粒之特性分析............6 2.1物質磁性理論......................6 2.1.1物質磁性之分類..................6 2.1.2磁滯曲線(Hysteresis)............8 2.2奈米磁粒的特性....................9 2.2.1表面效應........................10 2.2.2量子尺寸效應....................10 2.2.3奈米粒子的磁學性能..............11 2.3奈米磁粒功率損耗..................12 2.3.1功率損耗與頻率的關係............14 第三章 系統設計......................15 3.1系統基本架構......................15 3.2半橋串聯諧振式電路架構與分析......16 3.2.1半橋串聯共振式換流器之元件設計..17 3.2.2半橋串聯諧振式電路操作原理及與切換頻率之關係..20 3.2.3高頻高功率開關元件..............26 3.2.4控制與隔離驅動電路設計..........27 3.3高頻電磁線圈設計與量測............28 3.3.1電磁線圈設計和線圈繞製..........28 3.3.2高頻電磁線圈實際量測............30 3.4可變頻率耦合系統..................32 3.4.1頻率控制電路....................32 3.4.2弦波產生電路....................33 第四章 系統實現與實驗結果............35 4.1系統實現..........................35 4.2系統模擬..........................36 4.2.1半橋串聯諧振模擬電路............36 4.2.2諧振電路模擬結果................36 4.3半橋驅動訊號電路..................38 4.4.1半橋串聯諧振式電路升溫結果......41 4.4.2雙頻耦合加熱實驗................46 4.5實驗結果討論......................51 第五章 結論與未來發展................54 5.1結論..............................54 5.2未來展望..........................55 參考文獻.............................56 附錄.................................62 自述.................................65

    [1]F. Spreafico, L. Gandola, A. Marchiano, F. Simonetti and G. Poggi, "Brain magnetic resonance imaging after high-dose chemotherapy and radiotherapy for childhood brain tumors", International Journal Radiation Oncology Biology and Physics, vol. 70, pp. 1011-1019, 2008.
    [2]V. Nagesh, C. I. Tsien, T. L. Chenevert, B. D. Ross and H. S. Lawrence, "Radiation-induced changes in normal-appearing white matter in patients with cerebral tumors: a diffusion tensor imaging study", International Journal Radiation Oncology Biology and Physics, vol. 70, pp. 1002-1010, 2008.
    [3]M. D. Hurwitz, I. D. Kaplan, G. K. Svensson, K. Hynynen and M. S. Hansen, "Feasibility and patient tolerance of a novel transrectal ultrasound hyperthermia system for treatment of prostate cancer", International Journal Hyperthermia, vol. 17, pp. 31-37, 2001.
    [4]T. Saga, H. Sakahara, Y. Nakamoto, N. Sato and T. Ishimori, "Enhancement of the therapeutic outcome of radio-immunotherapy by combination with whole-body mild hyperthermia", European Journal of Cancer, vol. 37, pp. 1429-1434, 2001.
    [5]F. Mohamed, P. Marchettini, O. A. Stuart, M. Urano and P. H. Sugarbaker, "Thermal enhancement of new chemotherapeutic agents at moderate hyperthermia", Annals of Surgical Oncology, vol. 10, pp. 463–468, 2003.
    [6]F. Wu, W. Z. Chen, J. Bai, J. Z. Zou and Z. L. Wang, "Tumor vessel destruction resulting from high-intensity focused ultrasound in patients with solid malignancies", Ultrasound in Medicine and Biology, vol. 28, pp. 535-542, 2002.
    [7]A. Jordan, R. Scholz, P. Wust, H. Fahling and R. Felix, "Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles", Journal of Magnetism and Magnetic Materials, vol. 201, pp. 413-419, 1999.
    [8]R. Righetti, F. Kallel, R. J. Stafford, R. E. Price and T. A. Krouskop, "Elastographic characterization of HIFU-Induced lesions in canine livers", Ultrasound in Medicine and Biology, vol. 25, pp. 1099-1113, 1999.
    [9]Q. Y. Fan, B. A. Ma, X. C. Qiu, Y.-L. Li, J. Ye and Y. Zhou, "Preliminary report on treatment of bone tumors with microwave-induced hyperthermia", Bioelectromagnetics, vol. 17, pp. 218-222, 1996.
    [10]P. Moroz, S. K. Jones and B. N. Gray, "Magnetically mediated hyperthermia current status and future directions", International Journal Hyperthermia, vol. 18, pp. 267-284, 2002.
    [11]F. Matsuoka, M. Shinkai, H. Honda, T. Kubo, T. Sugita and T. Kobayashi, "Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma", BioMagnetic Research and Technology, 2004.
    [12]I. Hilger, R. Hergt and W. A. Kaiser, "Towards breast cancer treatment by magnetic heating", Journal of Magnetism and Magnetic Materials, vol. 293, pp. 314-319, 2005.
    [13]A. Ito, M. Shinkai, H. Honda and T. Kobayashi, "Medical application of functionalized magnetic nanoparticles", Journal of Bioscience and Bioengineering,vol. 100, pp. 1-11, 2005.
    [14]H. Kaneko, K. Igarashi, K. Kataoka and M. Miura, "Heat shock induces phosphorylation of histone H2AX in mammalian cells", Biochemical and Biophysical Research Communications, vol. 328, pp. 1101-1106, 2005.
    [15]R. K. Gilchhist, W. D. Shorey, R. C. Hanselman, J. C. Pahbott and C. B. Taylor, "Selective inductive heating of lymph nodes", Annals of Surgical Oncology, vol. 146, pp. 596-606, 1957.
    [16]李玉寶,“奈米生醫材料”,五南出版社,2006。
    [17]A. Jordan, R. Scholz, K. Maier-Hauff, M. Johannsen, P. Wust and J. Nadobny, "Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia", Journal of Magnetism and Magnetic Materials, vol. 225, pp. 118-126, 2001.
    [18]M. Ma, Y. Wu, J. Zhou, Y. K. Sun, Y. Zhang and N. Gu, "Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field", Journal of Magnetism and Magnetic Materials, vol. 268, pp. 33-39, 2004.
    [19]A. Ito, H. Honda and T. Kobayashi, "Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of "heat-controlled necrosis" with heat shock protein expression", Cancer Immunol Immunother, vol. 55, pp. 320-328, 2006.
    [20]P. Moroz, S. K. Jones and B. N. Gray, "Tumor response to arterial embolization hyperthermia and direct injection hyperthermia in a rabbit liver tumor model", Journal of Surgical Oncology, vol. 80, pp. 149–156, 2002.
    [21]P. Moroz, S. K. Jones and B. N. Gray, "The effect of tumour size on ferromagnetic embolization hyperthermia in a rabbit liver tumour model", International Journal Hyperthermia, vol. 18, pp. 129-140, 2002.
    [22]邱崙捷,“磁性奈米顆粒結合抗癌藥Doxorubicin之體內及體外抗腫瘤實驗”,國立成功大學生物科技研究所碩士論文,民國九十三年。
    [23]曾晧瑜,“使用超順磁氧化鐵於癌症高溫治療之研究”,國立成功大學工程科學系碩士論文,民國九十六年。
    [24]R. Hergt, W. Andra, C. G. Ambly, I. Hilger, W. A. Kaiser, U. Richter and H. G. Schmidt, "Physical limits of hyperthermia using magnetite fine particles", IEEE Transactions on magnetics, vol. 34, pp. 3745-3754, 1998.
    [25]B. D. Cullity, "Introduction to magnetic materials", ADDISION-WESLEY Publishing Company, 1972.
    [26]J. David, "Introduction to magnetism and magnetic materials", Chapman and Hall, 1991.
    [27]鍾秉憲,“鈷奈米粒子之選擇性物理沉積探討”,國立成功大學材料科學及工程學系碩士論文,民國九十二年。
    [28]張煦與李學養,“磁性物理學”,聯經出版社,民國七十一年。
    [29]V. S. Zaitsev, D. S. Filimonov, I. A. Presnyakov, R. J. Gambino and B. Chu, "Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions", Journal of Colloid and Interface Science, vol. 212, pp. 49-57, 1999.
    [30]伊邦耀,“奈米時代”,五南圖書出版股份有限公司,2002。
    [31]黃韋翔,“四氧化三鐵奈米粒子在核磁共振造影顯影劑的應用”,國立成功大學化學研究所碩士論文,民國九十三年。
    [32]A. Henglein, "Physicochemical properties of extremely small colloidal metal and semiconductor particles", Chemical Review, vol. 89, pp. 1861-1873, 1989.
    [33]J. Lee, T. Isobe and M. Senna, "Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH", Journal of Colloid and Interface Science, vol. 177, pp. 490–494, 1996.
    [34]莊萬發,“超微粒子理論應用”,復漢出版社,1995。
    [35]R. Kotitz, P. C. Fannin and L. Trahms, "Time domain study of Brownian and Neel relaxation in ferrofluids", Journal of Magnetism and Magnetic Materials, vol. 149, pp. 42-46, 1995.
    [36]杜其永,“布朗溫度計與顆粒流體之溫度”,物理雙月刊(廿七卷三期),2005年6月。
    [37]D. Weller and A. Moser, "Thermal effect limits in ultrahigh-density magnetic recording", IEEE Transactions on Magnetics, vol. 35, pp. 4423-4439, 1999.
    [38]W. F. Brown, "Thermal fluctuations of a single-domain particle", Physical Review, vol. 130, pp. 1677-1686, 1963.
    [39]L. Neel, "Thermoremanent magnetization of fine powders", Reviews of modern physics, vol. 25, pp. 293-295, 1953.
    [40]L. Neel, "Some new results on antiferromagnetism and ferromagnetism", Reviews of modern physics, vol. 25, 1953.
    [41]蕭正昌, “應用於腫瘤熱療之奈米磁粒加熱系統研製”,國立成功大學電機工程系碩士論文,民國九十五年。
    [42]P. C. Fannin, S. W. Charles, C. M. Oireachtaigh and S. Odenbach, "Investigation of possible hysteresis effects arising from frequency- and field-dependent complex susceptibility measurements of magnetic fluids", Journal of Magnetism and Magnetic Materials, vol. 302, pp. 1-6, 2006.
    [43]M. K. Kazimierczuk and D. Czarkowski, "Resonant power converter", John Wiley and Sons, 1995.
    [44]M. K. Kazimierczuk and W. Szaraniec, "Class-D zero-voltage-switching inverter with only one shunt capacitor", IEE Proceedings-B, vol. 139, 1992.
    [45]M. K. Kazimierczuk, "Class D voltage-switching MOSFET power amplifier", IEE Proceedings-B, vol. 138, 1991.
    [46]R. P. Severns, "Topologies for three-element resonant converter", IEEE Transactions on power electronics, vol. 7, 1992.
    [47]R. L. Steigerwald, "A comparison of half-bridge resonant converter topologies", IEEE Transactions on power electronics, vol. 3, pp. 174-182, 1988.
    [48]陳弼先,“無線透膚電能傳輸系統之研究”,國立成功大學電機工程學系碩士論文,民國八十七年。
    [49]劉明峰,“全橋相移式柔性切換負載並聯共振電流型感應加熱器之設計與研製”,中原大學電機工程學系碩士論文,民國九十三年。
    [50]山崎浩,“Power MOSFET應用技術”,全華科技圖書股份有限公司,民國九十三年。
    [51]陳建璋,“半橋串聯共振式磁奈米粒熱療加熱系統研製”,國立成功大學電機工程學系碩士論文,民國九十五年。

    下載圖示 校內:2013-07-22公開
    校外:2013-07-22公開
    QR CODE