| 研究生: |
陳幸榆 Chen, Hsing-Yu |
|---|---|
| 論文名稱: |
低溫燒結陶瓷材料Ba(Ni1-xMgx)2(VO4)2(x = 0–0.8)在微波頻段之研究與應用 Study and Applications of Low-Firing Ceramics Ba(Ni1-xMgx)2(VO4)2 (x = 0–0.8) at Microwave Frequencies |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 微波介電材料 、濾波器 |
| 外文關鍵詞: | microwave dielectric ceramics, bandpass filter |
| 相關次數: | 點閱:73 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要分別介紹兩大部分,第一部分將介紹新開發的微波介電材料;第二部分將設計一濾波器,模擬於不同基板上的微波特性。
第一部分首先介紹BaNi2(VO4)2陶瓷之微波介電特性,接著使用與Ni2+ (0.69Å)離子半徑相近的Mg2+(0.72Å)對BaNi2(VO4)2中的Ni2+做取代,並探討Ba(Ni1-xMgx) 2(VO4)2 (x = 0–0.8)的微波介電特性與材料微結構。由實驗得知,當取代比例為x = 0.6,且燒結溫度在990oC時有良好的微波介電特性,εr ~11.2, Q×f~51,400 GHz, τf ~ –52.8 ppm/°C。
第二部分將設計一操作約在2.45GHz的濾波器。主體架構為U型共振器,為了改善頻率響應,採用Source-Load coupling的耦合方式,使其能產生一傳輸零點,以及在U型共振器內部加入一開路殘段以期能有短路的特性。最後,我們將電路模擬在FR4、Al2O3、Ba(Ni0.4Mg0.6)2(VO4)2基板上,並分析其頻率響應。
In order to obtain a novel low-temperature ceramics, the microwave dielectric properties of Ba(Ni1-xMgx)2(VO4)2 (x = 0 – 0.8) ceramics had been investigated. The experimental results show that BaNi2(VO4)2 has the best properties at sintering temperature 930℃ for 4 hours, with ε_r~9.0, Q×f~ 18,300 GHz, and τf ~-66.2 ppm/℃. Then the Ni2+ from the BaNi2(VO4)2 had been substituted by Mg2+, at x = 0.6, where the ε_r~11.2, Q×f~51,400, τf ~-52.8 ppm/℃ at the sintering temperature of 990℃ for 4 hours. Also, we designed a bandpass filter on FR4、Al2O3、Ba(Ni0.6Mg0.4)2(VO4)2 substrates. According to the results of simulation, the performance of the filter was improved by using low-loss dielectric ceramics as the substrate.
[1] W. F. Smith, 劉品均(譯), 施佑蓉(譯), 材料科學與工程, 第三版, 高立圖書,(2005).
[2] J. W. Cahn and R. B. Heady, “Analysis of Capillary Forces in Liquid-Phase Sintering of Jaggered Particles,” J. Am. Cearm. Soc., 53 [7] 406-409 (1970)
[3] W. J . Huppmann and G . Petzow, “Sintering Processes,’’Plenum Press, (1979).
[4] R. M. German, “Liquid phase Sintering,” Plenum Press, (1985).
[5] J. H. Jean and C. H. Lin, “Coarsening of Tungsten Particles in W-Ni-Fe Alloys,” J. Mater. Sci., 24 [2] 500-504 (1989)
[6] D. M. Pozar, Microwave engineering, Addison-Wesley (1998).
[7] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators,” Microwave SysTFm News., 13, 152–161 (1983).
[8] D. Kajfez, A. W. Glisson, and J. James, “Computed model field distributions for isolated dielectric resonators,” IEEE Trans. Microwave Theory Tech., 32 [12]
1609–1616 (1984).
[9] 張盛富, 戴明鳳, 無線通信之射頻被動電路設計, 全華出版社, (1998).
[10] 鄭景太, 淺談高頻低損失介電材料, 工業材料, 176期, (2001).
[11] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, 陳皇鈞(譯), “陶瓷材料概論,” 曉園出版社, (1988).
[12] 余樹楨,樹晶體之結構與性質,體渤海堂文化公司, (2007).
[13] R. Umemura, H. Ogawa, H. Ohsato, A. Kan, and A. Yokoi, “Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic,” J. Eur. Ceram. Soc., 25 2865-2870 (2005).
[14] M. R. Joung, J. S. Kim, M. E. Song, S. Nahm, J. H. Paik, and B. H. Choi ,“Formation and microwave dielectric properties of the Mg2V2O7 ceramics,” J.Am. Soc., 92 [7] 1621–1624 (2009).
[15] Liang Fangn,FeiXiang,CongxueSu,HuiZhang, “A novel low firing microwave dielectric ceramic NaCa2Mg2V3O12,”Ceram.Int.39 [8] 9779–9783(2013).
[16] Congxue Su, Liang Fang, Zhenhai Wei, Xiaojun Kuang, Hui Zhang, “ LiCa3ZnV3O12: a novel low-firing, highQ microwave dielectric ceramic, ” Ceram. Int.,40 [3] 5015–5018 (2014).
[17] Liang Fang, CongxueSu, HuanfuZhou, ZhenhaiWei, HuiZhang, “ Novel low-firing microwave dielectric ceramic LiCa3MgV3O12 with low dielectric loss, ”J.Am.Ceram.Soc.96 [3] 688–690 (2013).
[18] Mi-Ri Joung, Jin-SeongKim, Myung-EunSong, SahnNahm, “ Low- temperature sintering and microwave dielectric properties of the Li2CO3-Added Ba2V2O7 ceramics, ” J.Am.Ceram.Soc.,93 [4] 934–936 (2010).
[19] Liang Fangn, ZhenhaiWei, CongxueSu, FeiXiang, HuiZhang “Novel low-firing microwave dielectric ceramics : BaMV2O7 (M = Mg, Zn) ,” Ceram. Int.,40 [10] 16835–16839 (2014).
[20] E. K. Suresh, A. N. Unnimaya, A. Surjith, and R. Ratheesh, “New vanadium based Ba3MV4O15 (M = Ti and Zr) high Q ceramics for LTCC applications,” Ceram. Int., 39 [4] 3635–3639 (2013).
[21] Huanfu Zhoun, FenHe,XiuliChen, JieChen, LiangFang, WeiWang, YanbingMiao, “A novel thermally stable low-firing LiMg4V3O12 ceramic: Sintering characteristic, crystal structure and microwave dielectric properties ,” Ceram. Int. ,40 [4] 6335–6338 (2014).
[22] G. G. Yao , and H. W. Zhang , “Novel series of Low-Firing Microwave Dielectrics Ceramics: Ca5A4(VO4)6 (A2+ = Mg, Zn),” J. Am. Ceram. Soc., 96 [6] 1691–1693 (2013).
[23] R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI Design Techniques for Analog and Digital Circuits, McGraw-Hill, (1990).
[24] R.A. Pucel, D. J. Masse, C.P. Hartwig, “Losses in microstrip”, 16 [6] 342–350 (1968)
[25] J. S. Hong and M. J. Lancaster, “Microstrip Filters for RF/Microwave Applications”, John Wiley & Sons, (2001).
[26] G. Kompa, Practical Microstrip Design and Applications, Artech House, (2005).
[27] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, “Microstrip Lines and Slotlines,” Second Edition, Artech House, (1996).
[28] G. L. Matthaei, L. Young, E. M. T. Jones, “Microwave filters, impedence matching networks and coupling structures,” Artech House, (1980).
[29] E. J. Denlinger, “Losses of microstrip lines,” IEEE Trans. Microwave Theory Tech. 28 [6] 513–522 (1980).
[30] X.C. Zhang, Z.Y. Yu, and J. Xu , “Design of Microstrip Dual-Mode Filters Based on Source-Load Coupling,” IEEE Microw. Wireless Compon. Lett., 18 [10] 677–679 (2008).
[31] M. Zhou, X. Tang, and F. Xiao, “Miniature Microstrip Bandpass Filter Using Resonator-Embedded Dual-Mode Resonator Based on Source-Load Coupling,” IEEE Microw. Wireless Compon. Lett., 20 [3] 139–141 (2010).
[32] Jae Ryong Lee, “New Compact Bandpass Filter Using Microstrip Resonators with Open Stub Inverter”IEEE microwave magazine, Vol. 10, No. 12, Oct. 2000
[33]Sang-Won Yun, “Varactor-Tuned Hairpin Bandpass Filter with Enhanced Stopband Performance”Proceedings of Asia-Pacific Microwave Conference 2006
[34] B. W. Hakki and P. D. Coleman, “A dielectric resonator method of measuring inductive capacities in the millimeter range,” IEEE Trans. Microwave Theory Tech., 8 [4] 402–410 (1960).
[35] W. E. Courtney, “Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators,” IEEE Trans. Microwave Theory Tech., 18 [8] 476–485 (1970).
[36] P. Wheless and D. Kajfez, “The use of higher resonant modes in measuring the dielectric constant of dielectric resonators,” IEEE Trans. Microwave Theory Tech., 85 [1] 473–476 (1985).
[37] Y. Kobayashi and M. Katoh, “Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method,” IEEE Trans. Microwave Theory Tech., 33 [7] 586–592 (1985).
[38] Study and Applications of Low-Firing Ceramics (Ba1-xSrx)Mg2(VO4)2(x=0-1) at Microwave Frequency (2014).
[39]A. Grzechnik, P. F. McMillan, “High pressure behavior of Sr3(VO4)2 and Ba3(VO4)2,” J. Solid State Chem., 132, 156–162 (1997).
[40]M.-Y. Chen , C.-T. Chia, “Microwave properties of Ba(Mg1/3Ta2/3)O3, Ba(Mg1/3Nb2/3)O3 and Ba(Co1/3Nb2/3)O3 ceramics revealed by Raman scattering,” Journal of the European Ceramic Society, 26 1965–1968 (2006)
校內:2021-07-31公開