簡易檢索 / 詳目顯示

研究生: 陳幸榆
Chen, Hsing-Yu
論文名稱: 低溫燒結陶瓷材料Ba(Ni1-xMgx)2(VO4)2(x = 0–0.8)在微波頻段之研究與應用
Study and Applications of Low-Firing Ceramics Ba(Ni1-xMgx)2(VO4)2 (x = 0–0.8) at Microwave Frequencies
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 109
中文關鍵詞: 微波介電材料濾波器
外文關鍵詞: microwave dielectric ceramics, bandpass filter
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要分別介紹兩大部分,第一部分將介紹新開發的微波介電材料;第二部分將設計一濾波器,模擬於不同基板上的微波特性。
    第一部分首先介紹BaNi2(VO4)2陶瓷之微波介電特性,接著使用與Ni2+ (0.69Å)離子半徑相近的Mg2+(0.72Å)對BaNi2(VO4)2中的Ni2+做取代,並探討Ba(Ni1-xMgx) 2(VO4)2 (x = 0–0.8)的微波介電特性與材料微結構。由實驗得知,當取代比例為x = 0.6,且燒結溫度在990oC時有良好的微波介電特性,εr ~11.2, Q×f~51,400 GHz, τf ~ –52.8 ppm/°C。
    第二部分將設計一操作約在2.45GHz的濾波器。主體架構為U型共振器,為了改善頻率響應,採用Source-Load coupling的耦合方式,使其能產生一傳輸零點,以及在U型共振器內部加入一開路殘段以期能有短路的特性。最後,我們將電路模擬在FR4、Al2O3、Ba(Ni0.4Mg0.6)2(VO4)2基板上,並分析其頻率響應。

    In order to obtain a novel low-temperature ceramics, the microwave dielectric properties of Ba(Ni1-xMgx)2(VO4)2 (x = 0 – 0.8) ceramics had been investigated. The experimental results show that BaNi2(VO4)2 has the best properties at sintering temperature 930℃ for 4 hours, with ε_r~9.0, Q×f~ 18,300 GHz, and τf ~-66.2 ppm/℃. Then the Ni2+ from the BaNi2(VO4)2 had been substituted by Mg2+, at x = 0.6, where the ε_r~11.2, Q×f~51,400, τf ~-52.8 ppm/℃ at the sintering temperature of 990℃ for 4 hours. Also, we designed a bandpass filter on FR4、Al2O3、Ba(Ni0.6Mg0.4)2(VO4)2 substrates. According to the results of simulation, the performance of the filter was improved by using low-loss dielectric ceramics as the substrate.

    摘要 I Extended Abstract II 致謝 VI 目錄 VII 圖目錄 XI 表目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 文獻回顧 3 2-1 材料的燒結 3 2-1-1 材料燒結之擴散方式 3 2-1-2 材料燒結之過程 4 2-1-3 燒結的種類 5 2-2 介電共振器原理(Dielectric resonator:DR) 7 2-3 微波介電材料之特性 10 2-3-1 介電係數(Dielectric Constant, εr) 10 2-3-2 品質因數(Quality Factor, Q) 13 2-3-3 共振頻率溫度飄移係數(τf) 16 2-4六方晶系(Hexagonal) 17 2-5 拉曼光譜與分子振動模態簡介 18 2-5-1 拉曼光譜(Raman spectra) 18 2-5-2 分子的振動模態(Vibrational modes) 18 2-6 低溫共燒陶瓷技術(Low temperature co-fired ceramics, LTCC) 19 第三章 微帶線及濾波器原理 20 3-1 濾波器原理 20 3-1-1濾波器的簡介 20 3-1-2濾波器之種類及其頻率響應 21 3-2 微帶線原理 24 3-2-1 微帶傳輸線的簡介 24 3-2-2 微帶線的傳輸模態 24 3-2-3 微帶線各項參數公式計算及考量 25 3-2-4 微帶線的不連續效應 28 3-2-5 微帶線的損失 34 3-3 微帶線諧振器種類 36 3-3-1 λ/4短路微帶線共振器 37 3-3-2 λ/2開路微帶線共振器 38 3-4 共振器間的耦合形式 40 3-4-1 電場耦合(Electric coupling) 40 3-4-2 磁場耦合(Magnetic coupling) 43 3-4-3 混和耦合(Mixed coupling) 46 3-5濾波器設計步驟 49 3-5-1 U型微帶線共振器 49 3-5-2 Source-Load Coupling 50 3-5-3 開路殘段(Oen stub) 51 第四章 實驗程序與量測方法 52 4-1 微波介電材料的製備 52 4-1-1 粉末的製備與球磨 53 4-1-2 粉末的煆燒 53 4-1-3 加入黏劑、過篩 53 4-1-4 壓模成型、去黏劑及燒結 54 4-2 微波介電材料的量測與分析 55 4-2-1 密度測量 55 4-2-2 X-Ray分析 55 4-2-3 SEM分析 56 4-2-4 拉曼光譜分析 56 4-2-5 介電特性量測與分析 57 4-2-6 共振頻率溫度飄移係數之量測 63 第五章 實驗結果與討論 64 5-1 BaNi2(VO4)2之微波介電特性 64 5-1-1 BaNi2(VO4)2之XRD相組成分析 65 5-1-2 BaNi2(VO4)2之拉曼光譜分佈 67 5-1-3 BaNi2(VO4)2之SEM分析 68 5-1-4 BaNi2(VO4)2的拉曼波峰半高寬(FWHM)分析 69 5-1-5 BaNi2(VO4)2之相對密度分析結果 70 5-1-6 BaNi2(VO4)2之介電係數(εr)分析結果 71 5-1-7 BaNi2(VO4)2之品質因數與共振頻率乘積(Q×f)分析結果 72 5-1-8 BaNi2(VO4)2之共振頻率溫度飄移係數(τf)分析結果 73 5-2 Ba(Ni1-xMgx)2(VO4)2 (x = 0–1)之微波介電特性 74 5-2-1 Ba(Ni1-xMgx)2(VO4)2 (x = 0–1)之XRD相組成分析 75 5-2-2 Ba(Ni1-xMgx)2(VO4)2 (x = 0–1)之拉曼光譜分佈 76 5-2-3 Ba(Ni1-xMgx)2(VO4)2 (x = 0–1)之SEM分析 77 5-2-4 Ba(Ni1-xMgx)2(VO4)2 (x = 0–1)之相對密度分析結果 78 5-2-5 Ba(Ni1-xMgx)2(VO4)2 (x = 0–1)之介電係數分析結果 79 5-2-6 Ba(Ni1-xMgx)2(VO4)2 (x = 0–1)之品質因數與共振頻率乘積分析結果 80 5-2-7 Ba(Ni1-xMgx)2(VO4)2 (x = 0–1)之共振頻率溫度飄移係數分析結果 81 5-3 濾波器的模擬 83 5-3-1 使用玻璃纖維基板(FR4)之模擬結果 84 5-3-2 使用Al2O3基板之模擬結果 85 5-3-3 使用Ba(Ni0.4Mg0.6)2(VO4)2自製基板之模擬結果 86 第六章 結論 88 參考文獻 89

    [1] W. F. Smith, 劉品均(譯), 施佑蓉(譯), 材料科學與工程, 第三版, 高立圖書,(2005).
    [2] J. W. Cahn and R. B. Heady, “Analysis of Capillary Forces in Liquid-Phase Sintering of Jaggered Particles,” J. Am. Cearm. Soc., 53 [7] 406-409 (1970)
    [3] W. J . Huppmann and G . Petzow, “Sintering Processes,’’Plenum Press, (1979).
    [4] R. M. German, “Liquid phase Sintering,” Plenum Press, (1985).
    [5] J. H. Jean and C. H. Lin, “Coarsening of Tungsten Particles in W-Ni-Fe Alloys,” J. Mater. Sci., 24 [2] 500-504 (1989)
    [6] D. M. Pozar, Microwave engineering, Addison-Wesley (1998).
    [7] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators,” Microwave SysTFm News., 13, 152–161 (1983).
    [8] D. Kajfez, A. W. Glisson, and J. James, “Computed model field distributions for isolated dielectric resonators,” IEEE Trans. Microwave Theory Tech., 32 [12]
    1609–1616 (1984).
    [9] 張盛富, 戴明鳳, 無線通信之射頻被動電路設計, 全華出版社, (1998).
    [10] 鄭景太, 淺談高頻低損失介電材料, 工業材料, 176期, (2001).
    [11] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, 陳皇鈞(譯), “陶瓷材料概論,” 曉園出版社, (1988).
    [12] 余樹楨,樹晶體之結構與性質,體渤海堂文化公司, (2007).
    [13] R. Umemura, H. Ogawa, H. Ohsato, A. Kan, and A. Yokoi, “Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic,” J. Eur. Ceram. Soc., 25 2865-2870 (2005).
    [14] M. R. Joung, J. S. Kim, M. E. Song, S. Nahm, J. H. Paik, and B. H. Choi ,“Formation and microwave dielectric properties of the Mg2V2O7 ceramics,” J.Am. Soc., 92 [7] 1621–1624 (2009).
    [15] Liang Fangn,FeiXiang,CongxueSu,HuiZhang, “A novel low firing microwave dielectric ceramic NaCa2Mg2V3O12,”Ceram.Int.39 [8] 9779–9783(2013).
    [16] Congxue Su, Liang Fang, Zhenhai Wei, Xiaojun Kuang, Hui Zhang, “ LiCa3ZnV3O12: a novel low-firing, highQ microwave dielectric ceramic, ” Ceram. Int.,40 [3] 5015–5018 (2014).
    [17] Liang Fang, CongxueSu, HuanfuZhou, ZhenhaiWei, HuiZhang, “ Novel low-firing microwave dielectric ceramic LiCa3MgV3O12 with low dielectric loss, ”J.Am.Ceram.Soc.96 [3] 688–690 (2013).
    [18] Mi-Ri Joung, Jin-SeongKim, Myung-EunSong, SahnNahm, “ Low- temperature sintering and microwave dielectric properties of the Li2CO3-Added Ba2V2O7 ceramics, ” J.Am.Ceram.Soc.,93 [4] 934–936 (2010).
    [19] Liang Fangn, ZhenhaiWei, CongxueSu, FeiXiang, HuiZhang “Novel low-firing microwave dielectric ceramics : BaMV2O7 (M = Mg, Zn) ,” Ceram. Int.,40 [10] 16835–16839 (2014).
    [20] E. K. Suresh, A. N. Unnimaya, A. Surjith, and R. Ratheesh, “New vanadium based Ba3MV4O15 (M = Ti and Zr) high Q ceramics for LTCC applications,” Ceram. Int., 39 [4] 3635–3639 (2013).
    [21] Huanfu Zhoun, FenHe,XiuliChen, JieChen, LiangFang, WeiWang, YanbingMiao, “A novel thermally stable low-firing LiMg4V3O12 ceramic: Sintering characteristic, crystal structure and microwave dielectric properties ,” Ceram. Int. ,40 [4] 6335–6338 (2014).
    [22] G. G. Yao , and H. W. Zhang , “Novel series of Low-Firing Microwave Dielectrics Ceramics: Ca5A4(VO4)6 (A2+ = Mg, Zn),” J. Am. Ceram. Soc., 96 [6] 1691–1693 (2013).
    [23] R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI Design Techniques for Analog and Digital Circuits, McGraw-Hill, (1990).
    [24] R.A. Pucel, D. J. Masse, C.P. Hartwig, “Losses in microstrip”, 16 [6] 342–350 (1968)
    [25] J. S. Hong and M. J. Lancaster, “Microstrip Filters for RF/Microwave Applications”, John Wiley & Sons, (2001).
    [26] G. Kompa, Practical Microstrip Design and Applications, Artech House, (2005).
    [27] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, “Microstrip Lines and Slotlines,” Second Edition, Artech House, (1996).
    [28] G. L. Matthaei, L. Young, E. M. T. Jones, “Microwave filters, impedence matching networks and coupling structures,” Artech House, (1980).
    [29] E. J. Denlinger, “Losses of microstrip lines,” IEEE Trans. Microwave Theory Tech. 28 [6] 513–522 (1980).
    [30] X.C. Zhang, Z.Y. Yu, and J. Xu , “Design of Microstrip Dual-Mode Filters Based on Source-Load Coupling,” IEEE Microw. Wireless Compon. Lett., 18 [10] 677–679 (2008).
    [31] M. Zhou, X. Tang, and F. Xiao, “Miniature Microstrip Bandpass Filter Using Resonator-Embedded Dual-Mode Resonator Based on Source-Load Coupling,” IEEE Microw. Wireless Compon. Lett., 20 [3] 139–141 (2010).
    [32] Jae Ryong Lee, “New Compact Bandpass Filter Using Microstrip Resonators with Open Stub Inverter”IEEE microwave magazine, Vol. 10, No. 12, Oct. 2000
    [33]Sang-Won Yun, “Varactor-Tuned Hairpin Bandpass Filter with Enhanced Stopband Performance”Proceedings of Asia-Pacific Microwave Conference 2006
    [34] B. W. Hakki and P. D. Coleman, “A dielectric resonator method of measuring inductive capacities in the millimeter range,” IEEE Trans. Microwave Theory Tech., 8 [4] 402–410 (1960).
    [35] W. E. Courtney, “Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators,” IEEE Trans. Microwave Theory Tech., 18 [8] 476–485 (1970).
    [36] P. Wheless and D. Kajfez, “The use of higher resonant modes in measuring the dielectric constant of dielectric resonators,” IEEE Trans. Microwave Theory Tech., 85 [1] 473–476 (1985).
    [37] Y. Kobayashi and M. Katoh, “Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method,” IEEE Trans. Microwave Theory Tech., 33 [7] 586–592 (1985).
    [38] Study and Applications of Low-Firing Ceramics (Ba1-xSrx)Mg2(VO4)2(x=0-1) at Microwave Frequency (2014).
    [39]A. Grzechnik, P. F. McMillan, “High pressure behavior of Sr3(VO4)2 and Ba3(VO4)2,” J. Solid State Chem., 132, 156–162 (1997).
    [40]M.-Y. Chen , C.-T. Chia, “Microwave properties of Ba(Mg1/3Ta2/3)O3, Ba(Mg1/3Nb2/3)O3 and Ba(Co1/3Nb2/3)O3 ceramics revealed by Raman scattering,” Journal of the European Ceramic Society, 26 1965–1968 (2006)

    無法下載圖示 校內:2021-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE