簡易檢索 / 詳目顯示

研究生: 李君謨
Lee, Chun-Mo
論文名稱: 強健滑動模式與複數區間矩陣方法於不確定系統控制設計及分析之研究
Control Design and Analysis of Uncertain Systems via Robust Sliding Mode and Complex Interval Matrix Methods
指導教授: 莊智清
Juang, Jyh-Ching
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 98
中文關鍵詞: 滑動模式控制區間矩陣
外文關鍵詞: sliding mode control, interval matrix
相關次數: 點閱:194下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文探討兩個有關於強健性控制理論的主題。第一個主題探討滑動模式控制系統中的強健性控制器設計方法,藉由線性矩陣不等式的數學理論,分別發展出三種功能不同的強健性滑動模式控制器設計方法。其結果顯示,於滑動模式控制設計問題中,藉箸解一組聯立矩陣不等式,可設計出兼具強健穩定與強健性能的滑動模式控制器。本文所發展出來的設計方法,可適用於受到干擾且帶有耦合或不耦合不確定性的系統。此外,本文並建立一種逼近模式控制器以排除滑動模式控制系統中所產生的不良振顫效應。更進一步,本文發展出一種以狀態觀測器為基礎的逼近模式控制器,系統的強健性能要求仍能滿足。在第二個主題中,利用強健控制理論中的結構性奇異值理論,本文發展出一套分析複數區間矩陣穩定性的方法。基於此種方法架構,文中提出了多項複數區間矩陣、實數區問矩陣、複數區間多項式及實數區問多項式的穩定性判別法則。此外,文中提出一個有關於複數區間矩陣在控制系統上的應用,其結果有助於參數化不確定系統的研究。對於前述提出的各種設計及分析方法,文中亦提出了許多範例予以模擬說明。

     In the dissertation two topics are investigated regarding to the robust control theory. One topic is the design of robust controllers for sliding mode control systems. A linear matrix inequality technique is developed for the design of both sliding mode and reaching phase control laws. It is shown that by solving a set of LMIs, the switching surface can be designed such that the dynamics in the sliding mode achieve robust stability and bounded L2 gain performance with respect to matched and unmatched uncertainties in the presence of disturbances. Furthermore, a smooth reaching phase control law is presented to eliminate the undesirable chattering effect and maintain the robustness property all the time. Finally, a smooth observer based control law is developed to maintain the robust performance of a system in the case that not all of the states are accessible. In the second topic, a robustness analysis formulation, based on the structured singular value techniques, is proposed to study the stability problem of a complex interval matrix. Accordingly, explicit criteria for testing the Hurwitz stability of complex interval matrices, real interval matrices, complex interval polynomials and real interval polynomials are all constructed regarding to the proposed formulation. Besides, an application of complex interval matrices to the design of a control system is presented. Several simulations are given to illustrate the aforementioned design and analysis methods.

    摘要 I Abstract II Acknowledgment III Contents IV List of Figures VI Nomenclature VII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Review of Robust Control and Sliding Mode Control 2 1.2.1 Robust Control 2 1.2.2 Sliding Mode Control 8 1.3 Contribution 11 1.4 Dissertation Organization 12 Chapter 2 Mathematical Fundamentals 14 2.1 Linear Matrix Inequalities 14 2.2 Structured Singular Value 18 Chapter 3 Design of Robust Sliding Mode Controllers 21 3.1 Introduction 21 3.2 Problem Formulation and Preliminary Results 25 3.3 Robust Sliding Mode Controllers : State Feedback Case 32 3.3.1 Sliding Mode Controllers 37 3.3.2 Reaching Phase Controllers 39 3.4 Observer Based Reaching Phase Controller 43 3.5 Simulation Results 54 3.6 Summary 59 Chapter 4 Criteria for Hurwitz Stability of General Complex Interval Matrices and its Applications 62 4.1 Introduction 62 4.2 Formulation and Preliminaries 64 4.3 Stability Criteria for Complex Interval Matrices 65 4.3.1 Application to Real Interval Matrices 70 4.4 Stability Criteria for Complex Interval Polynomials 73 4.4.1 Application to Real Interval Matrices 78 4.4.2 Application to Systems with Interval Plants 79 4.5 Summary 86 Chapter 5 Conclusions 87 References 89 Publication List 96 Vita 98

    [1]Apkarian, P., Becker, G., Gahinet, P. and Kajiwara, H., “LMI Techniques
    in Control Engineering From Theory to Practice,” Workshop Notes CDC, 1996.
    [2]Balas, G. J., Doyle, J. C, Glover, K, Packard, A., and Smith, R., -
    Analysis and Synthesis Toolbox for Use with MATLAB, the Math Works Inc.,
    2001.
    [3]Bartolini, G., Ferrara, A., Utkin, V. I., and Usai, E., “On Multi-Input
    Chattering-Free Second-Order Sliding Mode Control,” IEEE Transactions on
    Automatic Control, Vol. 45, No. 9, pp. 1711-1717, 2000.
    [4]Bhattacharyya, S.P., Chapellat, H., and Keel, L.H., Robust Control: The
    Parametric Approach, Prentice-Hall PTR,1995.
    [5]Bondarev, A. G., Bondarev, S. A., Kostylyeva, N. Y., and Utkin, V. I.,
    “Sliding Modes in Systems with Asymptotic State Observers,” Automation and
    Remote Control, Vol. 46, pp. 679–684, 1985.
    [6]Boyd, S. P., Ghaoui, L. E, Feron, E. and Balakrishnan, V., Linear Matrix
    Inequalities in System and Control Theory, SIAM, 1994.
    [7]Choi, H. H., “A New Method for Variable Structure Control System Design: a
    Linear Matrix Inequality Approach,” Automatica, Vol. 33, pp. 2089-2092,
    1997.
    [8]Choi, H. H., “On the Existence of Linear Sliding Surfaces for a Class of
    Uncertain Dynamic Systems with Mismatched Uncertainties,” Automatica, Vol.
    35, pp. 1707-1715, 1999.
    [9]Choi, H. H., “Variable Structure Output Feedback Control Design for a
    Class of Uncertain Dynamic Systems,” Automatica, Vol. 38, pp. 335-341,
    2002.
    [10]DeCarlo, R. A., Zak, S. H., and Mathews, G. P., “Variable Structure
    Control of Nonlinear Multivariable Systems: a Tutorial,” IEEE
    Proceedings, Vol. 76, pp. 212-232, 1988.

    [11]Doyle, J. C., “Analysis of Feedback Systems with Structured
    Uncertainties,” Proceedings IEE, Vol. 129, Part D (6), pp. 242-250,1982.
    [12]Doyle, J. C., Glover, K., Khargonekar, P. P., and Francis, B. A., “State
    Space Solutions to Standard H2 and Control Problems,” IEEE Transactions
    on Automatic Control, Vol. AC-34, No. 8, pp. 831- 847, 1989.
    [13]Dullerud, G. E., and Paganini, F., A Course in Robust Control Theory, New
    York: Springer-Verlag , 2000.
    [14]Edwards, C., and Spurgeon, S. K., “Sliding Mode Stabilization of
    Uncertain Systems Using Only Output Information,” International Journal
    of Control, Vol. 62, pp. 1129-1144, 1995.
    [15]Edwards, C., and Spurgeon, S. K., Sliding Mode Control: Theory and
    Applications, London:Taylor and Francis, 1998.
    [16]Edwards, C., and Spurgeon, S. K., “On the Limitations of Some Variable
    Structure Output Feedback Controller Design,” Automatica, Vol. 36, pp.
    743-748, 2000.
    [17]El-Khazali, R., and DeCarlo, R., “Output Feedback Variable Structure
    Control Design,” Automatica, Vol. 31, pp. 805-816, 1995.
    [18]Fridman, L.M., “An Averaging Approach to Chattering,” IEEE Transactions
    on Automatic Control, Vol. 46, No. 3, p.p. 1260-1265, 2001.
    [19]Furuta, K., and Pan,Y., “Variable Structure Control with Sliding
    Sectors,” Automatica, Vol. 36, pp. 211-228, 2000.
    [20]Gahinet, P., Nemirovski, A., Laub, A. J., and Chilali, M., LMI Control
    Toolbox, Natick, MA: The MathWorks Inc., 1995.
    [21]Ghosh, R., Sen, S., and Datta, K. B., “An Improved Method for Determining
    the Stability of Interval Matrices,” International Journal of Systems
    Science, Vol. 31, No.2, pp.171– 176, 2000.
    [22]Hill, D., and Moylan, P., “The Stability of Nonlinear Dissipative
    Systems,” IEEE Transactions on Automatic Control, Vol. 21, No.5, pp. 708-
    711, 1976.
    [23]Horn, R. A., and Johnson, C.R., Matrix Analysis, Cambridge: University
    Press, 1994.
    [24]Horowitz, I., “Survey of Quantitative Feedback Theory,” International
    Journal of Control, Vol. 53, pp. 255-291, 1991.
    [25]Hung, J. Y., Gao, W., and Hung, J. C., “Variable Structure Control: a
    Survey,” IEEE Transactions on Industrial Electronics, Vol. 40, pp. 2-22,
    1993.
    [26]Juang, J. C., and Lee, C. M., “Design of Sliding Mode Controllers with
    Bounded L2 Gain Performance: an LMI Approach,” International Journal of
    Control, to appear, 2005.
    [27]Khalil, H. K., Nonlinear Systems, New Jersey: Prentice Hall, 1996.
    [28]Kim, K. S., Park, Y., and Oh, S. H., “Designing Robust Sliding Hyperplane
    for Parametric Uncertain Systems: a Riccati Approach,” Automatica, Vol.
    36, pp. 1041-1048, 2000.
    [29]Lawrence, C. T., Tits, A. L., and Dooren, P. V. “A Fast Algorithm for the
    Computation of an Upper Bound on the -norm,” Automatica, Vol. 36, pp.
    449-456, 2000.
    [30]Lee, C. M., and Juang, J. C., “A Unified Approach to the Stability
    Analysis about Interval Matrices and Interval Polynomials,” Transactions
    of the Aeronautical and Astronautical Society of the Republic of China, to
    appear, 2005.
    [31]Mansour, M. , “Robust Stability of Interval Matrices,” Proc. 28th
    Conference Decision and Control, Tampa, FL, pp. 46-51, 1989.
    [32]Matlab, SIMULINK User’s Guide, Natick, MA: The MathWorks Inc., 2001.
    [33]Naimark, L. and Zeheb, E. , “An Extension of the Levy-Desplanque Theorem
    and Some Stability Conditions for Matrices with Uncertain Entries,” IEEE
    Transactions on Circuits System-1, Vol. 44, No. 2, pp.167-170, 1997.
    [34]Pai, M. A., Vournas, C. D., Michel, A. N., and Ye, H. , “Applications of
    Interval Matrices in Power System Stabilizer Design,” Electrical Power &
    Energy Systems, Vol.19, No.3, pp.179-184, 1997.
    [35]Qu, Z., Robust Control of Nonlinear Uncertain Systems, New York: John
    Wiley & Sons, Inc., 1998.
    [36]Rohn, J. , “An Algorithm for Checking Stability of Symmetric Interval
    Matrices,” IEEE Transactions on Automatic Control, Vol. 41, No. 1, pp.133-
    136, 1996.
    [37]Rojas, J. A. and Collado, J. M., “Stability of Interval Matrices Using
    the Distance to the Set of Unstable Matrices,” Proceedings American
    Control Conference, Baltimore, Maryland, pp. 238-239, 1994.
    [38]Sezer, M. E. and Siljak, D. D., “On Stability of Interval Matrices,”
    IEEE Transactions on Automatic Control, Vol. 39, No. 2, pp.368-371, 1994.
    [39]Skogestad, S., and Postlethwaite, I., Multivariable Feedback Control, New
    York: John Wiley & Sons,1996.
    [40]Slotine, J.J.E., and Li, W., Applied Nonlinear Control, New Jersey:
    Prentice Hall, 1991.
    [41]Su,W.C., Drakunov, S.V., and , ., “Constructing Discontinuity Surfaces
    for Variable Structure Systems: a Lyapunov Approach,” Automatica, Vol.
    32, pp. 925-928, 1996.
    [42]Tan, C. P. and Edwards, C., “An LMI Approach for Designing Sliding Mode
    Observers,” International Journal of Control, Vol. 74, pp.1559-1568,
    2001.
    [43]Utkin, V. I., Sliding Modes and Their Applications in Variable Structure
    Systems, Moscow: MIR, 1978.
    [44]Utkin, V. I., Sliding Modes in Control Optimization, Berlin: Springer-
    Verlag, 1992.
    [45]VanAntwerp, J. G., and Braatz, R. D., “A Tutorial on Linear and Bilinear
    Matrix Inequalities,” Journal of Process Control, Vol. 10, pp. 363-385,
    2000.
    [46]Wang, K., Michel, A. N., and Liu, D. , “Necessary and Sufficient
    Conditions for the Hurwitz and Schur Stability of Interval Matrices,”
    IEEE Transactions on Automatic Control, Vol 39, No, 6, pp.1251-1255,
    1994.
    [47]Wang, W.-J. and Yan S.-F. , “Stability Confidence for Fuzzy Matrices,”
    Fuzzy Sets and Systems, Vol. 103, pp. 507-511,1999.
    [48]Xu, S.J., Rachid, A., and Darouach, M., “Robustness Analysis of Interval
    Matrices Based on Kharitonov's Theorem,” IEEE Transactions on Automatic
    Control, Vol. 43, No. 2, pp. 273-278, 1998.
    [49]Young, K.D., and , . (Eds), Variable Structure Systems, Sliding Mode and
    Nonlinear Control , Berlin: Springer-Verlag, 1999.
    [50]Young, K. D., , ., and Utkin, V. I., “A Control Engineers Guide to
    Sliding Mode Control,” IEEE Transactions on Control System Technology,
    Vol. 7, pp. 328–342, 1999.
    [51]Zames, G. , “Feedback and Optimal Sensitivity : Model Reference
    Transformations, Multiplicative Seminorms, and Approximate Inverses,”
    IEEE Transactions on Automatic Control, Vol. 26, pp. 301-320,1981.
    [52]Zhou, K., Doyle, J. C., and Glover, K., Robust and Optimal Control, New
    Jersey: Prentice Hall, 1995.
    [53]Zhou, K., and Doyle, J. C., Essentials of Robust Control, New Jersey:
    Prentice Hall, 1998.
    [54]Zinober, A. S. I. (Eds.), Variable Structure and Lyapunov Control, Berlin:
    Springer-Verlag, 1993.

    下載圖示 校內:立即公開
    校外:2005-06-27公開
    QR CODE