| 研究生: |
吳世雄 Wu, Shih-Hsiung |
|---|---|
| 論文名稱: |
濺鍍製備CIGS 太陽能電池及特性探討 Preparations and Investigation of the Characteristics of Sputtering CIGS Solar Cells |
| 指導教授: |
施權峰
Shih, Chuan-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 太陽能電池 |
| 外文關鍵詞: | CIGS |
| 相關次數: | 點閱:60 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主旨是利用濺鍍製程製作銅銦鎵硒(CIGS)太陽能電池。研究中使用CuInGa、CuGa 及In 靶材組合設計前驅物,再將前驅物置入爐管進行硒化,並研究以硒化之CIGS 為吸收層之太陽能電池的特性(Al/AZO/i-ZnO/CdS/CIGS/Mo/soda-lime glass)。我們以單層CuInGa 做為前驅物設計元件,再以改善元件效能為原則,加入CuGa 層和In 層來調整前驅物結構。最後各別探討CuGa 層和In 層對元件特性的影響。
我們利用掃描式電子顯微鏡觀察剛硒化後的CIGS吸收層,發現其表面覆蓋大量片狀的Cu2Se二次相,導致嚴重漏電流問題。經過氰化鉀蝕刻5 min後,表面片狀結構消失改善漏電流。而後續延長蝕刻時間,雖然表面型態沒有變化,卻可以更進一步減少漏電流,推測是內部晶界存在的Cu2Se二次相被蝕刻掉的結果。為了達到良好的能隙漸變分佈,我們在單層CuInGa結構元件的上下分別沉積CuGa層,藉由Ga的導入得到高表面能隙及增加內部能隙漸變。結果顯示藉由CuGa層的導入,提高元件開路電壓(Voc)、短路電流(Jsc)及填充因子(FF),並提高太陽能電池效率。但由於同時增加Cu的含量,導致元件漏電流增加。
進一步的實驗採取在前驅物結構底層加入額外的In層來減低Cu的比例,我們發現增加內部In的含量,能有效抑制漏電流。原因之一推測來自於減少內部晶界所產生的Cu2Se二次相。其次,比較變溫Voc量測到的Ea值及EQE測量的Eg值,發現添加In層能改善表面復合的現象因此提高Voc。從XPS我們得知內部元素分佈情況並藉以推導內部能隙漸變分佈,發現In層改善Ga元素的分佈情形,提升載子傳輸增加Jsc及FF。最後太陽能電池具有Voc=0.46(V),Jsc=32.689(mA/cm2),FF=0.63,效率達到9.5%。
Two–stage method was used to prepared the CIGS-based solar cells.Sputtering was used to fabricate the CIG precursor, where the CuInGa, CuGa,and In targets were used as the targets to deposit the CIG layer. In the second stage, the precursor was selenized in a furnace. The reference CIGS solar cell was composed of Al/AZO/i-ZnO/CdS/CIGS/Mo/soda-lime glass. In order to improve the performance of solar cells, the CuGa and In layers were
introduced into the CIG absorber. Effects of the insertion of the CuGa and In layers were investigated in details.
SEM images revealed that the as-deposited CIGS thin film was covered by randomly distributed Cu2Se sheets, leading to a large leakage current. Thus, KCN was used to etch this unwanted phase. Obviously, the Cu2Se sheets were
reduced by KCN etching for 5 min. When the time of etching further increased, the surface morphology unchanged. However, the leakage current decreased with time of etching. It was attributed to the etching of the grain boundaries. In order to increase the gradient of conduction band, CuGa layer was deposited on the top and bottom of the original CIG structure. The surface energy gap and concentration grading of the Ga, increasing the values of the Voc, Jsc, FF, and efficiency of devices. However, the leakage problem still existed.
In layer was introduced to decease the content of Cu. The leakage current was effectively suppressed when In concentration increased. One of the possible reasons was that the Cu2Se presented in the grain boundaries was IV
removed. Secondly, temperature–dependent current-voltage measurement was used to investigate the surface recombination energy (Ea). It was found that the addition of In layer suppressed the leakage and raised up the Voc. In
addition, the bandgap gradient of the CIGS bulk increased, promoting the collection of photogenerated carriers. Consequently, the Jsc and FF increased. Finally, the CIGS solar cell with Voc=0.46(V), Jsc=32.689(mA/cm2), FF=0.63
and efficiency 9.5% was achieved.
1. D.Lidgate, ,“Green energy Engineering science and education journal.,”pp.221-227.1992.
2. Zweibel, K.,“Harnessing solar cell-The photovoltaics challenge.,”1990.
3. Adams,“Soc.,”vol.A25 p.113. 1877.
4. H.-W. Schock,“The early years, in Proceedings of the 16th European Photovoltaic Solar Energy Conference,” Thin film solar cells, pp. 270–274, 2000.
5. A. L. Fahrenbruch,“Fundamentals of Solar Cells, ” Academic Press, 1983.
6. M. L. Archer,“Clean Energy from Photovoltaics, ” Imperial College Press, 2001.
7. M. A. Green,“Solar cell efficiency tables (Version 17), Progress in Photovoltaics:Research and Applications, ”vol. 9, pp. 49–56, 2001.
8. N. H. Rafat,“The limiting efficiency of band gap graded solar cells,” Solar Energy Materials and Solar Cells, vol. 55, pp. 341–361, 1998.
9. “European Commission Directorate-General for Energy, Photovoltaics in 2010. Office for Official Publications of the European Communities, ” 1996.
10. Chopra K.L.,“An Overview, Progress in Photovoltaics: Research and Application, ” Thin–Film Solar Cells, 12, 69-92., 2004
11. Jäger-Waldau A., ,“ Solar Cell Production and Market Implementation of Photovoltaics, ” PV Status Report, TP 450 I – 21020. 2004
12. K. L. Chopra, “Transparent conductors- A status review,” Thin Solid Films, vol.102, pp. 1–46, 1983.
13. H. L. Hartnagel, “Semiconducting transparent thin films. ” Institute of Physics Publishing, Bristol, 1995.
14. R. L. Anderson, “Experiments on Ge-GaAs heterojunctions,” Solid State Electronics,vol. 5, pp. 341–351, 1962.
15. U. Rau, “Tunneling-enhanced recombination in Cu(In,Ga)Se2 heterojunction solar cells,” Applied Physics Letters, vol. 74, no. 1, pp. 111–113, 1999.
16. M. A. Contreras, “Defect chalcopyrite Cu(In1−xGax)3Se5 materials and high Ga content Cu(In,Ga)Se2-based solar cells,” in Proceedings 25th IEEE Photovoltaic Specialists Conference, pp. 809–812, 1996.
17. H.-J. Lewerenz, “Photovoltaik. ”, 1995.
18. F. G. Courreges, “Sputtered indium-tin oxide/cadmium telluride junctions and cadmium telluride surfaces,” Journal of Applied Physics, vol. 51, no. 4, pp.2175–2183,1980.
19. A. Niemegeers, “On the CdS/CuInSe2 conduction band discontinuity,” Applied Physics Letters, vol. 67, no. 7, pp. 843–845, 1995.
20. V. Nadenau, “Solar cells based on CuInSe2 and related compounds: Material and device properties and processing,” Progress in Photovoltaics: Research and Applications, vol. 3, pp. 363–382, 1995.
21. K. Ramanathan, “High efficiency Cu(In,Ga)Se2 thin film solar cells without intermediate buffer layers,” in Proceedings 2nd World Conference on Photovoltaic
Solar Energy Conversion, pp. 477–481, 1998.
22. M. Krejci, “ Preparation and characterization of heteroepitaxial CuInSe2 layers and Cu(In,Ga)Se2 substrate solar cells. ” PhD thesis, 1999.
23. T. Halboom, “Phase relations and microstructure in bulk materials and thin films of the ternary system Cu-In-Se,” in Proceedings 11th International Conference on Ternary and Multinary Compounds, pp. 249–252,1997.
24. V. Nadenau, “CuGaSe2 basier ende Heterostructure of¨unnschicht solar zellen. ” PhD thesis, 1999.
25. J. C. Mikkelsen, “Ternary phase relations of the chalcopyrite compound CuGaSe2,”Journal of Electronic Materials, vol. 10, pp. 541–558, 1981.
26. S.M.Sze, “Physics of Semiconductor Devices,” New York, 1981
27. A.L.Fahrenbruch, “fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion,” Academic Press, 1993
28. H.J.Moller, “Semiconductors for Solar Cells, ”Artech House, 1993
29. M.Turcu, “Interdependence of absorber composition and recombination mechanism in Cu(In,Ga)(Se,S)2 heterojunction solar cells,” Applied Physics Letters ,vol.80,pp 14
30. W.Horig, “the optical properties of CuInSe2 thin films, ” Thin solid films,vol.48,p.67,1978
31. L.L.Kazmerski, “Optical properties and grain boundary effects in CuInSe2,” J.Vac. Sci. Techno.,vol.A1,p.395,1983
32. S. Zhang, “Defect Physics of the CuInSe2 Chalcopyrite Semiconductor,” Physical Review B, “ vol.57, p.9642,1998
33. J.Kessler, “Electro-optical and Photoelectrochemical studies of CuIn3Se5 chalcopyrite films,” Proceedings of the 23rd IEEE photovoltaic specialist conference, p.549, 1993
34. M.A.Contreras et al, “Defect Chalcopyrite Cu(In,Ga)3Se5(0<x<1) materials and high Ga-content Cu(In,Ga)Se2-based solar cells,” Proceeding of the 25th IEEE photovoltaic
specialists conference ,p.809, 1996
35. N.Romeo, “Growth of large-graim CuInSe2 thin films bu Flash-Evaporation and Sputtering,” Solar Cells, vol.16, p.155, 1986
36. B.Pamplin, “Spray pyrolysis of CuInSe2 and related ternary semiconducting compounds, “Thin Solid Films, vol.60, p.141,1979
37. J.Piekoszewski, “RF-sputtered CuInSe2 thin films,” Proceedings of the 14th IEEE photovoltaic specialists conference, p.980, 1980
38. G.Hodes, “Eletrodeposition of CuInSe2 and CuInS2 films,” Solar Cells ,vol. 16,p.245,1986
39. Y.H.Kim, “Preparation of CuInSe2 thin films usng Electrodeposited In/Cu metallic layer,” Proceedings of the 24th IEEE photovoltaic specialist conference, p.202, 1994
40. S.P.Grindle, “Preparation and properties of CuInS2 thin films produced by exposing rf-sputterd Cu-In films to an H2S atmosphere, “Appl. Phys.Lett.vol.35, p.24,1979
41.J.R.Tuttle, “The performance of Cu(In,Ga)Se2 –based solar cells in conventional and concentrator application,” Proceedings of te MRS Meeting, vol.426, p.143,1996
42. A.Rockett, “Curremt Status and Issues in Polycrystalline CuInSe2 for Photovoltaic Applications,” Research Project, 1989
43. M.A.Contreras et al ,”16.4% Total Area Conversion Efficiency Thin Film Polycrystalline Solar Cells,” Progress in Photovoltaics : Reserch and Applications, vol.2, p.287,1994
44. D. Azulay,”Current routes in polycrystallines CuInSe2 and Cu(In,Ga)Se2 films,” Solar Energy Materials, vol 91. pp85-90 , 2007
45. D.Cahen ,”Free Energies and Enthalpies of Possible Gas Phase and Surface Reactions for Preparation of CuInSe2 ,”Journal of Physics and Chemistry of Solids, vol.52,p.947,1991
46. K.A.Lindhl, “Quantitative Investigation of Copper/Indium Multilayer Thin Film Reactions,” Ph.D. Thesis, Colorado School of Mines, 1996
47. D.S.Albin, “A study on the optical and microstructural characteristics of quaternary Cu(In,Ga)Se2 polycrystalline thin films, ”Proceedings of the 21th IEEE photovoltaic
specialists conference, p.52, 1990
48. W.S.Chen, “Development of thin film polycrystalline CuIn1-xGaxSe2 solar cells, ”Proceedings of the 19th IEEE photovoltaic specialists conference, p.1445, 1987
49. C.L.Jensen, “The role of Gallium in CuInSe2 solar cells fabricated by a two stagemethod,” Proceeding of the 23rd IEEE photovoltaic sprcialists conference, p.577, 1993
50. M.Nishitai, “Photovoltaic properties of Cu(In,Ga)Se2 thin film solar cell fabricated by coevaporation process, ” Proceeding of the 24th IEEE photovoltaic specialists
conference,p. 222, 1994
51. S.Wei, “Effects of Ga Addition to CuInSe2 on its Electronic, Structural, and Defect Properties, ”Journal of Applied Phtsics, vol.72, p.3199,1998
52. H.W.Shock, “Solar Cells Based on CuInSe2 and Related Compond: Recent Progress in Europe, ”Solar Energy Materials and Solar Cells, vol.34, p.19, 1994
53. J.R.Tuttle, “Characterization of Variable Bandgap Thin Film Cu(In,Ga)Se2 :A Simple Model for the Interdiffusion of In amd Ga in Alloy Structures,” Solar Energy Materials
and Solar Cells, vol.35, p.193,1993
54. S.H.Wei, “Band Offsets and Optical Bowings of Chalcopyrites and Zn-Based II-Vi Alloys,” Journal of Applied Physics, vol.78, p.3846,1995
55. A.M.Gabor, “The conversion of (In,Ga)2Se3 thin films to Cu(In,Ga)Se2 for application to photovoltaic solar cells,” ,Ph.D.Dissertation ,University of Colorado,1995
56. T.Minemoto, “Therretical Analysis of the Effect of Conduction Band Offset of Window/CIS Layer on Performance of CIS Solar Cells Using Device Simulation,” Solar Energy Materials and Solar Cells,vol.67,p.83,2001
57. J.R.Tuttle, “Experiments on the Modification of the Bi-Layer Structure in Cds/CuInSe2 Devices,” Proceedings of the 20th IEEE Photovoltaic Specialists Conference, Las
Vegas, p.1525, 1988
58. S.Zafar, “The effect of Surface Processing Conditons on the Junction Properties of CuInxGa1-xSe2 Solar Cells,”NREL/SNL Photovoltaic Program Review,1996
59.A.Dhingra, “Computer Simulation and Modeling of the Graded Bandgap CuInSe2/CdS Solar Cell,”Proceedings of the 23rd IEEE Photovoltaic Specialists Conference,Louisville, p.475, 1993
60. R.J.Schwartz, “Design Considerations for Thin Film CuInSe2 and other Polycrystalline Heterojunction Solar Cells, ”Proceedings of the 22nd IEEE Photovoltaics Specialists Conference ,Las Vegas ,p.920, 1991
校內:2020-12-31公開