| 研究生: |
楊明儒 Yang, Ming-Ru |
|---|---|
| 論文名稱: |
SnO2奈米線合成特性分析及其應用 Studies on the Characterization of the SnO2 Nanowires Growth and Its Applications |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 奈米線 、氧化錫 |
| 外文關鍵詞: | nanowire, SnO2 |
| 相關次數: | 點閱:81 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要利用錫蒸氣氧化法(CVD)合成氧化錫奈米線,並利用不同的製程條件,以掃描式電子顯微鏡觀察(SEM)觀察其外觀狀態。以XRD(X 光繞射分析)分析合成之氧化錫奈米線,確定此奈米線為二氧化錫(SnO2)之結構無誤,並以穿透式電子顯微鏡(TEM)觀察其內部結晶構造,並經由計算可得知其晶格常數 a = 4.73 Å、 c = 3.17 Å。
以氧化錫奈米線之I-V特性分析,及其電阻值的量測,做為一氧化碳(CO)氣體感測器的依據。實驗結果顯示由於擁有極大的表面積,氧化錫奈米線對於250 ppm CO 感測之靈敏度高達 52 %,較氧化錫薄膜對於250 ppm CO 感測之靈敏度 37 % 高出甚多,故非常適用於檢測 CO 之氣體感測器。
SnO2 nanowires were synthesized using a direct gas reaction route and were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) , transmission electron microscopy (TEM) and Raman-scattering spectroscopy. XRD, SEM and TEM indicated that the products were tetragonal SnO2 nanowires with lattice parameters of a = 4.73 Å、 c = 3.17 Å. Three vibrational modes were observed in the Raman spectra of the samples.
According to the current-voltage (I-V) measurements, we know that the sensitivity of SnO2 nanowires is much higher than SnO2 thin film because of the high surface-to-volume ratio of nanowires.
[1] 蔡嬪嬪,曾明漢,”氣體感測器之簡介、應用及市場”,材料與社會,第68期,p50,(1992)
[2] K. Tanaka, S. Morimoto, S. Sonoda., S. Matsuura, K. Moriya, M.Egashira,“Combustion monitoring sensor using tin oxide semiconductor”, Sensors and Actuators B,3, 247(1991)
[3] Powder Diffraction, 4, 156(1989)
[4] V. Lantto, P. Romppainen and S. Leppavuori,“A study of the temperature dependence of the barrier energy in porous tin dioxide”, Sensors and Actuators, 14, 149(1988)
[5] C. M. A. Brett and A. M. O. Brett,“Electrochemistry, Principles,Methods, and Applications”, Oxford University Press, NewYork, 60(1996)
[6] M. Székely, C. Mathieu, N. E. Moulayat, M. Herlem, H. Cachet, M.Keddam, H. Perrot, B. Fahys, B. Eid, and E. Caillot,“Behaviour of Fluorine-Doped Tin Oxide Electrode: A Study by Quartz Crysta l93 Microbalance in Propylene Carbonate”, J. Electroanal. Chem, 401, 89(1996)
[7] H. Yang, S. Han, L. Wang, I.-J. Kim, and Y. -M. Son, “Preparation and Characterization of Indium-Doped Tin Dioxide Nanocrystalline Powders”, Mater. Chem. Phys., 56, 153(1998)
[8] V. Casey and M. I. Stephenson,“A Study of Undoped and Molybdenum Doped, Polycrystalline, Tin Oxide Thin Films Produced by a Simple Reactive Evaporation Technique”, J. Phys.D: Appl. Phys., 23, 1212(1990)
[9] T. Ono, T. Yamanaka, Y. Kubokawa, and M. Komiyama, “Structure and Catalytic Activity of Sb Oxide Highly Dispersed on SnO2 for Propene Oxidation”, J. Catal., 109 , 423 (1988).
[10] C. J. R. Gonzalez-Oliver and I. Kato,“Sn(Sb)-Oxide Sol-Gel Coatings on Glass”, J. Non-Cryst. Solids, 82, 400(1986)
[11] N. L. Wu, L. F. Wu, Y. C. Yang, S. J. Hung,“Spontaneous Solution-Sol-Gel Process for Preparing Tin Oxide Monolith”, J. Mater. Res., 11, 813(1996)
[12] Y. Kobayashi, M. Okamoto, and A. Tomita,“Preparation of Tin Oxide Monolith by the Sol-Gel Method from Inorganic Salt”, J. Mater. Sci., 31, 6125(1996)
[13] T. A. Jones, B. Mann and J. G. Firth,“The effect of physical from the oxide on the conductivity changes produced by CH4、CO and H2O on ZnO ”, Sensors and Actuators, 5, 75(1984)
[14] J. Dayan, S. R. Sainkar and R.N. Karekar,“On highly selective ZnO:Al2O3 based thick film hydrogen sensors”, J. M. S. L., 16, 1952(1997)
[15] M. Aslam, V. A. Chaudhary, 1. S. Mzulla, S. R. Sainkar, A. B. Mandale, A. A. Belhekar and K. Vijamohanan,“A highly selective ammonia gas sensor using surface-ruthenate zinc oxide”, Sensors and Actuators B, 75, 162(1999)
[16] M. S. Berberich, J. G. Zheng, U. Weimar, W. Gopel, N. Barsan, E. Pentia and A. Tomescu,“The effect of Pt and Pd surface doping on the response nonocrystalline tin oxide gas sensor to CO”, Sensors and Actuators B, 31, 71(1996)
[17] H. L. Hartnagel, A. K. Jain and C. Jagadish,”Semiconducting Transparent Thin Films”, published by Institute of Physics Publication, 17(1995)
[18] P. Ciureanu,“Thin Film Resistive Sensors”, Institute of Physics Publishing, 451(1992)
[19] R.Sorita and T.Kawano, ”A high selective CO sensor using LaMnO3 electode
-attached zirconia galvanic cell”, Sensor and Actuators B, 40, 29(1997)
[20] S. Brunauer, L. S. Deming, W. E. Doming and E. Teller, J. Am. Chem. Soc., 62, 172(1940)
[21] J. K. Jian, X. L. Chen, W. J. Wang, L. Dai, Y. P. Xu. ” Low-temperature transport properties of individual SnO2 nanowires”, Appl. Phys. A, 76, 291(2003)
[22] S. H. Sun, G. W. Meng, Y. W. Wang, T. Gao, M. G. Zhang, Y. T. Tian, X. S. Peng, L. D. Zhang. Appl. Phys. A, 76, 287(2003)
[23] J. K. Jian, X. L. Chen, W. J. Wang, L. Dai, Y. P. Xu “Synthesis, morphologies and Raman-scattering spectra of crystalline stannic oxide nanowires”, Appl. Phys. A 75, 695(2002)
[24] Yong-Jun Ma, Feng Zhou, Li Lu, Ze Zhang, Solid State Communications, 130, 313(2004)
[25] Wang, Z. L., Gao, R. P., Gole, J. L., Stout, J. D. AdV. Mater., 12, 1938(2000)
[26] J. Y. Li, X. L. Chen, Z. Y. Qiao, Y. G. Cao, M. He, T. Xu: Appl. Phys. A, 71, 349(2000)
[27] Michael H. Hwang,“Room-Temperature Ultraviolet Nanowire Nanolasers”, Science, 292, 1897(2001)
[28] Y. W. Wang,“Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescenceproperties”, Journal of Crystal Growth, 234, 171(2002)
[29] Peidong Yang, “Controlled Growth of ZnO Nanowires and Their Optical Properties”, Advanced Functional Materials, 12(5), 323(2002)
[30] Seung Chul Lyu,“Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires”, Chemical Physics Letters, 363, 134(2002)
[31] Seu Yi Li,“Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process”, Journal of Crystal Growth, 247, 357(2003)
[32] Yiqing Chen, Xuefeng Cui, Kun Zhang, Dengyu Pan, Shuyuan Zhang, Bing Wang, J. G. Hou , Chemical Physics Letters, 369, 16(2003)
[33] J. E. Lennard-jones, Trans. Faraday Soc., 28, 333(1932)
[34] C. Xu, J. Tamaki, N. Miura and Y. Yamazoe, ”Grain aize effect on gas sensitivity of porous SnO2-based element”, Sensor and Actuators B, 3, 147(1991)
[35] M. S. Berberich, J. G. Zheng, U. Weimar, W. Gopel, N. Barsan, E. Pentia and A. Tomescu,“The effect of Pt and Pd surface doping on the response nonocrystalline tin oxide gas sensor to CO”, Sensors and Actuators B, 31, 71(1996)
[36] H. Geistlinger,“Electron theory of thin-film gas sensors”, Sensors and Actuators B, 17,47(1993)
[37] J. Wateson, K. Ihokura,“The tin dioxide gas sensor,” Meas. Sci. Technol., 4, 711(1993)
[38] 邱春茂,“鑭鍶鈷系鈣鈦礦結構薄膜對CO感測特性之研究”國立成功大學博士論文, (1999)
[39] 陳俞仲, ”SnO2/鑭系鈣鈦礦薄膜異質接合對CO感測特性之研究”, 國立成功大學碩士論文, (2000)
[40] J. G. Traylor, H. G. Smith, R. M. Nicklow, M. K. Wilkinson: Phys. Rev. B ,3, 3457(1971)
[41] P. S. Peercy, B. Morosin: Phys. Rev. B ,7, 2779(1973)
[42] A. Dieguez, A. Romano-Rodrigue, A. Vila, J. R. Morante, ”The complete Raman spectrum of nanometric SnO2 particles”, J. Appl. Phys., 90, 1550(2001)
[43] 戴志峰, ”鑭鍶鈷係鈣鈦礦薄膜異質接合對CO感測特性之研究”, 國立成功大學碩士論文, (1999)
[44] Feng Li a, Xianghua Yu , Hongjun Pan , Mianlin Wang , Xinquan Xin,” Syntheses of MO2 (M=Si, Ce, Sn) nanoparticles bysolid-state reactions at ambient temperature”, Solid State Sciences 2, 767 (2000)