簡易檢索 / 詳目顯示

研究生: 楊明儒
Yang, Ming-Ru
論文名稱: SnO2奈米線合成特性分析及其應用
Studies on the Characterization of the SnO2 Nanowires Growth and Its Applications
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 73
中文關鍵詞: 奈米線氧化錫
外文關鍵詞: nanowire, SnO2
相關次數: 點閱:81下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究主要利用錫蒸氣氧化法(CVD)合成氧化錫奈米線,並利用不同的製程條件,以掃描式電子顯微鏡觀察(SEM)觀察其外觀狀態。以XRD(X 光繞射分析)分析合成之氧化錫奈米線,確定此奈米線為二氧化錫(SnO2)之結構無誤,並以穿透式電子顯微鏡(TEM)觀察其內部結晶構造,並經由計算可得知其晶格常數 a = 4.73 Å、 c = 3.17 Å。
      以氧化錫奈米線之I-V特性分析,及其電阻值的量測,做為一氧化碳(CO)氣體感測器的依據。實驗結果顯示由於擁有極大的表面積,氧化錫奈米線對於250 ppm CO 感測之靈敏度高達 52 %,較氧化錫薄膜對於250 ppm CO 感測之靈敏度 37 % 高出甚多,故非常適用於檢測 CO 之氣體感測器。

    SnO2 nanowires were synthesized using a direct gas reaction route and were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) , transmission electron microscopy (TEM) and Raman-scattering spectroscopy. XRD, SEM and TEM indicated that the products were tetragonal SnO2 nanowires with lattice parameters of a = 4.73 Å、 c = 3.17 Å. Three vibrational modes were observed in the Raman spectra of the samples.
    According to the current-voltage (I-V) measurements, we know that the sensitivity of SnO2 nanowires is much higher than SnO2 thin film because of the high surface-to-volume ratio of nanowires.

    中文摘要…………………………………………………………… Ⅰ 英文摘要…………………………………………………………… Ⅱ 目錄…….…………………………………………………………... i 圖目錄….……………………………………………………………. iv 表目錄….……………………………………………………………. vi 第一章 緒論…………………………………………………… 1 1-1 前言…………………………………………………… 1 1-2  氣體感測器…………………………………………… 2 1-3 研究動機與目的……………………………………… 3 第二章 文獻回顧及理論基礎………………………………… 6 2-1 半導體氣體感測材料………………………………… 6 2-1-1 二氧化錫(Sn02 )……………………………………… 7 2-1-2 氧化鋅 (ZnO)………………………………………… 8 2-2 吸附理論 (adsorption theory)…………………… 10 2-2-1 物理吸附……………………………………………… 11 2-2-2 化學吸附……………………………………………… 13 2-3 金屬氧化物半導體之感測原理……………………… 17 2-3-2 表面電導模型………………………………………… 18 2-3-3 氧離子陷阱模型……………………………………… 19 2-4 二氧化錫奈米線(SnO2 Nanowire)之研究…………… 22 2-4-1 錫蒸氣氧化法 (CVD)………………………………… 22 2-4-2 VLS 法………………………………………………… 22 2-4-3 氧化亞錫 (SnO)製成法……………………………… 23 2-5 影響感測性質之因素………………………………… 25 2-5-1 降低晶粒尺寸………………………………………… 25 2-5-2 表面催化劑…………………………………………… 26 第三章 實驗方法及步驟……………………………………… 30 3-1 實驗流程圖…………………………………………… 30 3-2 裁製矽基板及清洗…………………………………… 31 3-3 實驗步驟……………………………………………… 32 3-4 性質測試……………………………………………… 33 3-4-1 奈米線成分分析……………………………………… 33 3-4-2 X光繞射分析(XRD -- X-ray diffraction)……… 33 3-4-3 掃描武電子顯微鏡觀察 (SEM)……………………... 34 3-4-4 穿通式電子顯微鏡 (TEM)…………………………... 34 3-4-5 拉曼散射 (Raman shift)…………………………… 35 3-5 電性量測……………………………………………… 37 3-5-1 電極製作……………………………………………… 37 3-5-2 I-V 特性量測………………………………………… 38 3-5-3 氣體感測特性之量測………………………………… 39 第四章  結果與討論……………………………………………41 4-1 不同製程參數對奈米線合成之影響………………… 42 4-1-1 成長溫度……………………………………………… 42 4-1-2 氧氣流量大小………………………………………… 45 4-1-3 成長時間……………………………………………… 48 4-2 氧化錫奈米線結構分析……………………………… 50 4-2-1 XRD 分析……………………………………………… 50 4-2-2 Raman 分析…………………………………………… 53 4-2-3 穿通式電子顯微鏡 (TEM)…………………………… 54 4-3 I – V 特性分析……………………………………… 56 4-4 氧化錫奈米線對 CO 的感測特性…………………… 63 第五章 結論與展望…………………………………………… 67 參考文獻……………………………………………………………..70

    [1] 蔡嬪嬪,曾明漢,”氣體感測器之簡介、應用及市場”,材料與社會,第68期,p50,(1992)
    [2] K. Tanaka, S. Morimoto, S. Sonoda., S. Matsuura, K. Moriya, M.Egashira,“Combustion monitoring sensor using tin oxide semiconductor”, Sensors and Actuators B,3, 247(1991)
    [3] Powder Diffraction, 4, 156(1989)
    [4] V. Lantto, P. Romppainen and S. Leppavuori,“A study of the temperature dependence of the barrier energy in porous tin dioxide”, Sensors and Actuators, 14, 149(1988)
    [5] C. M. A. Brett and A. M. O. Brett,“Electrochemistry, Principles,Methods, and Applications”, Oxford University Press, NewYork, 60(1996)
    [6] M. Székely, C. Mathieu, N. E. Moulayat, M. Herlem, H. Cachet, M.Keddam, H. Perrot, B. Fahys, B. Eid, and E. Caillot,“Behaviour of Fluorine-Doped Tin Oxide Electrode: A Study by Quartz Crysta l93 Microbalance in Propylene Carbonate”, J. Electroanal. Chem, 401, 89(1996)
    [7] H. Yang, S. Han, L. Wang, I.-J. Kim, and Y. -M. Son, “Preparation and Characterization of Indium-Doped Tin Dioxide Nanocrystalline Powders”, Mater. Chem. Phys., 56, 153(1998)
    [8] V. Casey and M. I. Stephenson,“A Study of Undoped and Molybdenum Doped, Polycrystalline, Tin Oxide Thin Films Produced by a Simple Reactive Evaporation Technique”, J. Phys.D: Appl. Phys., 23, 1212(1990)
    [9] T. Ono, T. Yamanaka, Y. Kubokawa, and M. Komiyama, “Structure and Catalytic Activity of Sb Oxide Highly Dispersed on SnO2 for Propene Oxidation”, J. Catal., 109 , 423 (1988).
    [10] C. J. R. Gonzalez-Oliver and I. Kato,“Sn(Sb)-Oxide Sol-Gel Coatings on Glass”, J. Non-Cryst. Solids, 82, 400(1986)
    [11] N. L. Wu, L. F. Wu, Y. C. Yang, S. J. Hung,“Spontaneous Solution-Sol-Gel Process for Preparing Tin Oxide Monolith”, J. Mater. Res., 11, 813(1996)
    [12] Y. Kobayashi, M. Okamoto, and A. Tomita,“Preparation of Tin Oxide Monolith by the Sol-Gel Method from Inorganic Salt”, J. Mater. Sci., 31, 6125(1996)
    [13] T. A. Jones, B. Mann and J. G. Firth,“The effect of physical from the oxide on the conductivity changes produced by CH4、CO and H2O on ZnO ”, Sensors and Actuators, 5, 75(1984)
    [14] J. Dayan, S. R. Sainkar and R.N. Karekar,“On highly selective ZnO:Al2O3 based thick film hydrogen sensors”, J. M. S. L., 16, 1952(1997)
    [15] M. Aslam, V. A. Chaudhary, 1. S. Mzulla, S. R. Sainkar, A. B. Mandale, A. A. Belhekar and K. Vijamohanan,“A highly selective ammonia gas sensor using surface-ruthenate zinc oxide”, Sensors and Actuators B, 75, 162(1999)
    [16] M. S. Berberich, J. G. Zheng, U. Weimar, W. Gopel, N. Barsan, E. Pentia and A. Tomescu,“The effect of Pt and Pd surface doping on the response nonocrystalline tin oxide gas sensor to CO”, Sensors and Actuators B, 31, 71(1996)
    [17] H. L. Hartnagel, A. K. Jain and C. Jagadish,”Semiconducting Transparent Thin Films”, published by Institute of Physics Publication, 17(1995)
    [18] P. Ciureanu,“Thin Film Resistive Sensors”, Institute of Physics Publishing, 451(1992)
    [19] R.Sorita and T.Kawano, ”A high selective CO sensor using LaMnO3 electode
    -attached zirconia galvanic cell”, Sensor and Actuators B, 40, 29(1997)
    [20] S. Brunauer, L. S. Deming, W. E. Doming and E. Teller, J. Am. Chem. Soc., 62, 172(1940)
    [21] J. K. Jian, X. L. Chen, W. J. Wang, L. Dai, Y. P. Xu. ” Low-temperature transport properties of individual SnO2 nanowires”, Appl. Phys. A, 76, 291(2003)
    [22] S. H. Sun, G. W. Meng, Y. W. Wang, T. Gao, M. G. Zhang, Y. T. Tian, X. S. Peng, L. D. Zhang. Appl. Phys. A, 76, 287(2003)
    [23] J. K. Jian, X. L. Chen, W. J. Wang, L. Dai, Y. P. Xu “Synthesis, morphologies and Raman-scattering spectra of crystalline stannic oxide nanowires”, Appl. Phys. A 75, 695(2002)
    [24] Yong-Jun Ma, Feng Zhou, Li Lu, Ze Zhang, Solid State Communications, 130, 313(2004)
    [25] Wang, Z. L., Gao, R. P., Gole, J. L., Stout, J. D. AdV. Mater., 12, 1938(2000)
    [26] J. Y. Li, X. L. Chen, Z. Y. Qiao, Y. G. Cao, M. He, T. Xu: Appl. Phys. A, 71, 349(2000)
    [27] Michael H. Hwang,“Room-Temperature Ultraviolet Nanowire Nanolasers”, Science, 292, 1897(2001)
    [28] Y. W. Wang,“Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescenceproperties”, Journal of Crystal Growth, 234, 171(2002)
    [29] Peidong Yang, “Controlled Growth of ZnO Nanowires and Their Optical Properties”, Advanced Functional Materials, 12(5), 323(2002)
    [30] Seung Chul Lyu,“Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires”, Chemical Physics Letters, 363, 134(2002)
    [31] Seu Yi Li,“Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process”, Journal of Crystal Growth, 247, 357(2003)
    [32] Yiqing Chen, Xuefeng Cui, Kun Zhang, Dengyu Pan, Shuyuan Zhang, Bing Wang, J. G. Hou , Chemical Physics Letters, 369, 16(2003)
    [33] J. E. Lennard-jones, Trans. Faraday Soc., 28, 333(1932)
    [34] C. Xu, J. Tamaki, N. Miura and Y. Yamazoe, ”Grain aize effect on gas sensitivity of porous SnO2-based element”, Sensor and Actuators B, 3, 147(1991)
    [35] M. S. Berberich, J. G. Zheng, U. Weimar, W. Gopel, N. Barsan, E. Pentia and A. Tomescu,“The effect of Pt and Pd surface doping on the response nonocrystalline tin oxide gas sensor to CO”, Sensors and Actuators B, 31, 71(1996)
    [36] H. Geistlinger,“Electron theory of thin-film gas sensors”, Sensors and Actuators B, 17,47(1993)
    [37] J. Wateson, K. Ihokura,“The tin dioxide gas sensor,” Meas. Sci. Technol., 4, 711(1993)
    [38] 邱春茂,“鑭鍶鈷系鈣鈦礦結構薄膜對CO感測特性之研究”國立成功大學博士論文, (1999)
    [39] 陳俞仲, ”SnO2/鑭系鈣鈦礦薄膜異質接合對CO感測特性之研究”, 國立成功大學碩士論文, (2000)
    [40] J. G. Traylor, H. G. Smith, R. M. Nicklow, M. K. Wilkinson: Phys. Rev. B ,3, 3457(1971)
    [41] P. S. Peercy, B. Morosin: Phys. Rev. B ,7, 2779(1973)
    [42] A. Dieguez, A. Romano-Rodrigue, A. Vila, J. R. Morante, ”The complete Raman spectrum of nanometric SnO2 particles”, J. Appl. Phys., 90, 1550(2001)
    [43] 戴志峰, ”鑭鍶鈷係鈣鈦礦薄膜異質接合對CO感測特性之研究”, 國立成功大學碩士論文, (1999)
    [44] Feng Li a, Xianghua Yu , Hongjun Pan , Mianlin Wang , Xinquan Xin,” Syntheses of MO2 (M=Si, Ce, Sn) nanoparticles bysolid-state reactions at ambient temperature”, Solid State Sciences 2, 767 (2000)

    下載圖示 校內:2014-07-05公開
    校外:2014-07-05公開
    QR CODE