簡易檢索 / 詳目顯示

研究生: 馬晴元
Ma, Ching-Yuan
論文名稱: 整合型地形座標系統上之三相流土石流模式在CUDA架構下實現
Modeling Three‐Phase Debris Flows on Integrated-Terrain-Following Coordinate System and the associated CUDA-GPU Implementation
指導教授: 戴義欽
Tai, Yih-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 62
中文關鍵詞: 三相流整合座標系統CUDAGPU高效率計算
外文關鍵詞: Three-phase debris flow, Integrated-terrain-following coordinate system, CUDA, GPGPU
相關次數: 點閱:61下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要分為兩個部分,第一部分為整合型座標系統上的應用、第二部分為三相流土石流模擬。本研究將模式皆使用 CUDA 架構進行高效率 GPU 計算,第一部 分採用地形擬合座標系統與傳統卡氏座標系統進行比較兩者在計算上的差異,並且再將地形平滑化的概念,加入地形座標系統中,增加地形座標系統更廣泛的應用於崎嶇地形上的模擬,並以此提出一個整合型地形座標系統,作為土石流災害模擬與沈積物相關的危險流分析。在內文中分別透過理想地形與真實案例應用,探討不同座標系統之間的差異,藉此顯示整合型座標系統的適用性。
    第二部分,以地形座標上的二相流數值方法為基礎,建構土石流三相流之理論模型,流體組成包含固體相、懸浮細顆粒相、水相。本研究將其應用於實際案例中,描述崩塌體從山坡滑入河流,濃度較高之土砂碰撞濃度較低流體,兩者不同濃度混合時,對間隙流體的黏滯性產生的巨大變化,土砂將水體往前推移,甚至可能產生湧浪現象,使土石流的模擬能更貼近實際情況。將土石流三相流的模擬結果,與過往研究中使用 CUDA 架構建構之土石流二相流進行結果比較,對照災後衛星影像中比較實際發生路徑,以展現模式應用於現地之可行性。

    This paper mainly consists of two parts, the first is the application of an integrated-terrain-following coordinate system, and the second is the three-phase debris flow simulation. The implemented code adopts the CUDA architecture for a GPU-high-efficient computation. The first part compares the discrepancies in results computed in different coordinate systems. Due to the offset caused by the depth integration of the Cartesian coordinate system, and the limitation of shallow curvature of the terrain-fitted coordinate system, this paper proposes an integrated-terrain-following coordinate system. The concept of terrain smoothing is added to the terrain-fitted coordinate system to verify the applicability of the terrain-fitted coordinate system in the simulation of landslide disasters on rough terrain through ideal orographic and practical case applications.
    Although the composition of debris flow is complex, the previous research mainly used models of single-phase or two-phase for ease of computation. With these simplified approaches, the significant effects of the clay/silt particle concentration on the viscosity of the debris flow cannot be well described. Accordingly, based on the numerical method of two-phase flow on terrain-fitted coordinates proposed by Tai et al. (2019), the second part is about the construction of a theoretical model of three-phase debris flows, supposed to be composed of the solid, clay/silt particle, and the water phase. The 2009 Hsaiolin event serves as the benchmark application. The interstitial fluid viscosity changed dramatically when the landslide mass approached the river and mixed with the water. The post-event satellite image reveals that there seem to be swells that hit the opposite bank. We compare the simulated flow paths with the bare zones in post-event satellite image. The consistency demonstrates the feasibility of engineering application.

    摘要 i 英文延伸摘要ii 致謝viii 目錄ix 表格xi 圖片xii 第一章 緒論 1 1.1. 研究動機與目的 1 1.2. 文獻回顧 2 1.2.1 座標系統 2 1.2.2 土石流模擬 4 1.3 本文架構 8 I 整合型座標系統 9 第二章 整合型座標系統 10 2.1. 座標系統 10 2.1.1. 卡氏座標系統 10 2.1.2. 地形座標系統 11 2.2.座標系統理論 13 2.3. 不同座標系統之比較 13 2.4. 高斯過濾應用於平滑化地形 15 第三章 整合型座標系統應用與分析 17 3.1. 案例一:理想化地形 17 3.1.1.深度差異 18 3.1.2.地形差異 20 3.2. 案例二:小林村事件 23 3.2.1.曲率 23 3.2.2. 土砂運移路徑 26 3.2.3.地形平滑化之差異比較 28 II 土石流三相流模擬 30 第四章 土石流三相流數值模式 31 4.1.理論概述 31 4.2.參數率定 35 4.3.計算流程 40 第五章 土石流三相流模擬應用與分析 42 5.1.案例探討 42 5.2.運移路徑比較 43 5.3. 可能發生之湧浪現象 52 5.4.介面化呈現 54 第六章 結果與建議 59 6.1.整合座標系統 59 6.2.土石流三相流模擬 60 6.3.建議 60 參考文獻 61

    [1]  F. Bouchut and M. Westdickenberg. Gravity driven shallow water models for arbitrary topography. Communications in Mathematical Sciences, 2(3):359–389, 2004.
    [2]  V. T. Chow. Open-channel hydraulics. New York & McGraw-Hill Book, 1959.
    [3]  J. Gray, M. Wieland, and K. Hutter. Gravity-driven free surface flow of granular avalanches over complex basal topography. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 455(1985):1841– 1874, 1999.
    [4]  W. Hui. The unified coordinate system in computational fluid dynamics. Communications in Computational Physics, 2(4):577–610, 2007.
    [5]  W. H. Hui. A unified coordinates approach to computational fluid dynamics. Journal of computational and applied mathematics, 163(1):15–28, 2004.
    [6]  C.-J. Ko, P.-C. Chen, H.-K. Wong, and Y.-C. Tai. Moses_2pdf: A gis-compatible gpu-accelerated high-performance simulation tool for grain-fluid shallow flows. arXiv preprint arXiv:2104.06784, 2021.
    [7] T.Koch, R.Greve, and K.Hutter. Unconfined flow of granular avalanches along a partly curved surface. ii. experiments and numerical computations. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 445(1924):415–435, 1994.
    [8]  I. Luca, Y.-C. Tai, C.-Y. Kuo, et al. Shallow geophysical mass flows down arbitrary topography. advances geophysical and environmental mechanics and mathematics. Holgar S (ed). p, pages 203–250, 2016.
    [9]  J. J. Major and T. C. Pierson. Debris flow rheology: Experimental analysis of fine-grained slurries. Water resources research, 28(3):841–857, 1992.
    [10]  M.Mergili, J.-T.Fischer, J.Krenn, and S.P.Pudasaini. r.avaflow v1, an advanced opensource computational framework for the propagation and interaction of two-phase mass flows. Geoscientific Model Development, 10(2):553–569, 2017.
    [11]  K. Nakatani, T. Wada, Y. Satofuka, and T. Mizuyama. Development of “kanako 2d (ver. 2.00),” a user-friendly one-and two-dimensional debris flow simulator equipped with a graphical user interface. International Journal of Erosion Control Engineering, 1(2):62–72, 2008.
    [12]  Y. Nishiguchi, T. Uchida, K. Tamura, and Y. Satofuka. Prediction of run-out process for a debris flow triggered by a deep rapid landslide. In Proceedings of 5th debris flow hazard mitigation conference, pages 477–485, 2011.
    [13]  J. S. O’Brien and P. Y. Julien. Laboratory analysis of mudflow properties. Journal of hydraulic engineering, 114(8):877–887, 1988.
    [14] M.Pastor, S. M. Tayyebi, M.M.Stickle, Á. Yagüe, M.Molinos, P.Navas, and D.Manzanal. A depth integrated, coupled, two-phase model for debris flow propagation. Acta Geotechnica, 16(8):2409–2433, 2021.
    [15]  S. P. Pudasaini. A general two-phase debris flow model. Journal of Geophysical Research: Earth Surface, 117(F3), 2012.
    [16]  S. P. Pudasaini and K. Hutter. Rapid shear flows of dry granular masses down curved and twisted channels. Journal of Fluid Mechanics, 495:193–208, 2003.
    [17]  S. B. Savage and K. Hutter. The dynamics of avalanches of granular materials from initiation to runout. part i: Analysis. Acta Mechanica, 86(1):201–223, 1991.
    [18]  Y. Tai and C. Kuo. Modelling shallow debris flows of the Coulomb-mixture type over temporally varying topography. Natural Hazards and Earth System Sciences, 12(2):269–280, 2012.
    [19]  Y.-C. Tai, J. Heß, and Y. Wang. Modeling Two-Phase Debris Flows With Grain-Fluid Separation Over Rugged Topography: Application to the 2009 Hsiaolin Event, Taiwan. Journal of Geophysical Research: Earth Surface, 124(2):305–333, 2019.
    [20]  Y.-C. Tai, C.-J. Ko, K.-D. Li, Y.-C. Wu, C.-Y. Kuo, R.-F. Chen, and C.-W. Lin. An idealized landslide failure surface and its impacts on the traveling paths. Frontiers in Earth Science, 8:313, 2020.
    [21]  Y.-C. Tai, C.-Y. Kuo, and W.-H. Hui. An alternative depth-integrated formulation for granular avalanches over temporally varying topography with small curvature. Geo- physical & Astrophysical Fluid Dynamics, 106(6):596–629, 2012.
    [22]  T. Takahashi. Debris flow: mechanics, prediction and countermeasures. Taylor & Francis, 2007.
    [23]  戴義欽,郭志禹,周閔翔,林彥廷,李坤錠,吳昱辰. 現地地形座標與非結構性網格應用. 科技部補助專題研究計畫成果報告, 2018.
    [24]  柯奇均. 在 CUDA 架構下以理想曲面估算崩塌破壞面及地形座標系統上的二相 流 GPU 平行模式應用. 國立成功大學水利及海洋工程學系碩士論文, 2021.

    下載圖示 校內:2025-06-30公開
    校外:2025-06-30公開
    QR CODE