| 研究生: |
劉鄭楷 Liu, Cheng-Kai |
|---|---|
| 論文名稱: |
液晶元件應用於顯示元件之研究 Studies of Liquid Crystal Components for Display Application |
| 指導教授: |
傅永貴
Fuh, Ying-Guey Andy |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 液晶元件 、顯示應用 |
| 外文關鍵詞: | liquid crystal components, display application |
| 相關次數: | 點閱:93 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去十年以來,液晶顯示器已經成為平面顯示器工業界的主流科技。許多應用在顯示技術上的液晶元件也已經被開發和研究。本論文將介紹三種應用在顯示技術上的液晶元件。
第一部分的研究是利用多重光干涉法製作高顏色純度的三原色濾光片。經過計算後,固定液晶分子排列的角度可以使三原色濾光片分別對應到液晶顯示器紅綠藍的子畫素上。本論文所提出的彩色濾光片可以應用在平面顯示器上,特別是小呎吋液晶顯示器。一種可以提升此三原色濾光片的光利用效率的方法也將會被討論。本論文所提出的彩色濾光片和入射光的角度有關,所以所提出的彩色濾光片適合使用在具備有可以收集光線的光學設計的液晶顯示器,此光學設計可以收集背光源讓光線可以接近垂直的入射至彩色濾光片。
第二部分將研究軸對稱排列的液晶顯示器。此設計的關鍵在於使用了軸對稱的偏光片。顯示器在不加電壓下,所有的液晶是垂直配向;加一垂直基板平面的電場,液晶會呈現軸對稱排列。由於使用了軸對稱偏光片,此顯示器的暗態和亮態的分布都是圓對稱,因此顯示器的視角也是呈現圓對稱。此顯示器的對比度在30度的視角內都超過10。由於受到方形畫素的影響,部分的液晶在某些方位角上不能過形成完美的圓對稱排列,這會使的顯示器的光利用效率下降。除此之外,此視角呈圓對稱的顯示器可以應用到一些私人的行動裝置上。
一般來說,膽固醇液晶不管從哪一面所量測到的反射頻譜都是一樣的,而第三部份將研究一不對稱反射光的摻雜旋性高分子的膽固醇液晶。換句話說,從其中一面和相反的那一面分別量測到的膽固醇液晶反射頻譜是不一樣的。形成這一光學不對稱的原因是膽固醇液晶形成多區域的平面結構,這一結構可以同時反射和散射光線。由於經過寬波段紫外光聚合的旋性高分子材料在液晶盒內的分佈不均勻,所以液晶盒內的膽固醇液晶螺距是連續分佈;螺距在液晶盒內的連續分佈是造成不對稱反射光的原因之一。另外,反射率和反射頻譜的寬度和所使用的液晶盒的厚度有關。
In the last decade, liquid crystal display (LCD) has become a mainstream technology in the flat panel display industry. Several liquid crystal (LC) components for display application have been studied and developed. In this thesis, three types of LC components for display application will be introduced.
First, a high-color-purity RGB color filter (CF) based on Fabry–Pérot etalon is proposed to extend the color gamut of LCDs. Various transmission spectra for corresponding pixel arrays are achieved by calculating the orientation of fixed polymerized LC polymers with high birefringence. The designed high-color-purity RGB-CF has the potential for use in display applications. An approach to improving light utilization efficiency is discussed. The color filter should have the backlight incident at nearly normal angle, hence, the RGB-CFs are suitable for application in LCDs that have optical systems which can collimate the backlight in entering the LCD panels at nearly normal angles.
Second, an optical simulation of axially symmetric vertically aligned (ASVA) LCDs is introduced. The key of the proposed ASCA CLDs is the use of axial polarizers. Because of the axial polarizers, the iso-light leakage and iso-transmittance contours of one subpixel are circularly symmetrical and hence result in circularly symmetric iso-contrast contours. The contrast ratio of the area close to the x- and y-axes at a polar angle of around 30° exceeds 10. The LCs near some azimuthal angles are not perfectly aligned in a circularly symmetric manner because of the square subpixel, which causes a major reduction in the light utilization efficiency. Additionally, the circularly symmetric iso-contrast has potential for fabricating private mobile products.
In general, the reflection color is identical from either side of a cholesteric liquid crystal (CLC). In the third part of this thesis, anisotropically reflected colors from a film that is based on chiral monomer (CM)-doped CLCs are observed. The key to obtaining such anisotropically reflected colors is the produced multidomain planar-CLC structures, which can simultaneously reflect and scatter the incident light. Ultraviolet polymerization of the CMs from one side of the cell results in an inhomogeneous distribution of pitch lengths across the cell, which is responsible for the anisotropically reflected colors from the two surfaces of the sample. The reflectivity and the bandwidth of the reflection spectrum are found to depend on the cell gap.
References
[1] K.-H. Kim, H.-J. Jin, K.-H. Park, J.-H. Lee, J. C. Kim, and T.-H. Yoon, Opt. Express 18, 16745 (2010).
[2] W. Choi, D.-W. Kim, and S.-D. Lee, Mol. Cryst. Liq. Cryst. 508, 35 (2009).
[3] Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, Opt. Express 46, 3766 (2007).
[4] J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead Jr. & B.-G. Wu, Mol. Cryst. Liq. Cryst. 165, 511 (1988).
[5] K.-S. Bae, U. Cha, Y.-J. Lee, Y.-K. Moon, H.-C. Choi,J.-H. Kim,C.-J. Yu, Opt. Express 19, 8291 (2011).
[6] K.-S. Bae, U. Cha, Y.-K. Moon, J.-W. Heo, Y.-J. Lee, J.-H. Kim, C.-J. Yu, Opt. Express 20, 6927 (2012).
[7] Y. Li, M. Jiao, S.-T. Wu, Opt. Express 18 , 16486 (2010).
[8] E. Jeong, M.-H. Chin, Y.-J. Lim, A. K. Srivastava, S.-H. Lee, K. H. Park, and H.- C. Choi, J. Appl. Phys. 104, 033108 (2008).
[9] X. Zhu, S.-T. Wu, J. Appl. Phys. 95, 7660 (2004).
[10] D.‐K. Yang, J. L. West, L.‐C. Chien, and J. W. Doane, J. Appl. Phys. 76, 1331 (1994).
[11] Paul S. Drzaic, J. Appl. Phys. 60, 2142 (1986).
[12] B. Bahoadur, “Liquid Crystals-Applications and Uses”, World Scientific Press, Singapore (1990).
[13] D.-K. Yang, S.-T. Wu, “Fundamentals of liquid crystal devices”, Wiley Chichester (2006).
[14] P. G. de Gennes and J. Prost, “The physics of liquid crystal”, Oxford University Press, New York (1993).
[15] K.-T. Cheng, “Studies of biphotonic effect in azo dye doped liquid crystals film and their applications”, PhD thesis, National Cheng Kung University (2006).
[16] D.-K. Yang, S.-T. Wu, “Reflective Liquid Crystal Displays”, Wiley Chichester (2001).
[17] H. Mori, Y. I toh, Y. Nishiura, T. Nakamura, and Y. Shinagawa, Jpn, J. Appl. Phys. 36, 143 (1997).
[18] M. Schadt and W. Helfrich, Appl. Phys. Lett. 18, 127 (1971).
[19] Grant R. Fowles, “Introduction to modern Optics”, New York: Dover, 1975.
[20] R. C. Jones, J. Opt. Soc. Am. 31, 488 (1941).
[21] Pochi Yeh, “Optics of liquid crystal display”, Wiley, Chichester, 1999.
[22] J.-C Chen, “Studies on the compensated characteristics of reflective super twisted nematic liquid crystal display (RSTN-LCDs)”, Master thesis, National Cheng Kung University (2006).
[23] A. Yariv, P. Yeh, Optical Waves in Crystals, Wiley, 1984.
[24] C.-K- Liu, Andy Y.-G. Fuh, Y.-D. Chen, and K.-T. Cheng, J. Phys. D:Appl. Phys. 43, 505102 (2010).
[25] I. I. Kim, B. McArthur, and E. Korevaar, Proc. SPIE 4214, 26 (2001).
[26] C.-K. Liu, K.-T. Cheng, and Andy Y.-G. Fuh, J. Display Technol. 8, 174 (2012).
[27] P.-L. Chen, K.-C. Lin, W.-C. Chuang, Y.-C. Tzeng, K.-Y. Lee, and W.-Y. Lee, IEEE Photon. Technol. Lett. 10, 467 (1997).
[28] K. Hirabayashi, H. Tsuda, and T. Kurokawa, IEEE Photon. Technol. Lett. 3, 213 (1991).
[29] A M.-M. Cheung, S. D. Durbin, and Y. R. Shen, Opt. Lett. 8, 39 (1983).
[30] J. S. Patel, M. A. Saifi, D. W. Berreman, C. Lin, N. Andreadakis, and S. D. Lee, Appl. Phys. Lett. 57, 1718 (1991).
[31] K. Hirabayashi, H. Tsuda, and T. Kurokawa, J. Lightw. Technol. 11, 2033 (1993).
[32] R. S. Tucker, D. M. Baney, W. V. Sorin, and C. A. Flory, IEEE J. Sel. Topics Quantum Electron. 8, 88 (2002).
[33] [Online]. Available: http://www.mirasoldisplays.com
[34] R. W. Sabnis, Displays 20, 119, (1999).
[35] R. W. Wake, S. L. Reithel, and H. G. McGuckin, U.S. Patent 4 876 166, Oct. 24, 1989.
[36] T. Schimizu and K. Koyabashi, U.S. Patent 4 934 791, Jun. 19, 1990.
[37] Y. Hirai and H. Katoh, in Proc. IDW, pp. 49–52, 1995.
[38] Y. Otsuki, in Proc. IDW, pp. 73–77, 1995.
[39] H.-H. Lin, C.-H. Lee, and M.-H. Lu, Opt. Express 17, 12397 (2009).
[40] T.-L. Chiu and J.-H. Lee, Opt. Commun. 283, 373 (2010).
[41] K. Kakinuma, Jpn. J. Appl. Phys. 45, 4330 (2006).
[42] F.-C. Lin, Y.-P. Huang, C.-M. Wei, and H.-P. D. Shieh, J. Display Technol. 6, 98 (2010).
[43] C.-C. Chen and C.-P. Hwang, U.S. Patent 7 811 725, Oct. 12, 2010.
[44] Y. Wang, U.S. Patent 6 031 653, Feb. 29, 2000.
[45] M. Karakawa, U.S. Patent 20 100 182 536, Jul. 22, 2010.
[46] M. Karakawa, U.S. Patent, 7 866 869, Jan. 11, 2011.
[47] S. Gauza, C.-H.Wen, S.-T.Wu, N. Janarthananl, and C.-S. Hsu, Jpn. J. Appl. Phys. 45, 7634 (1990).
[48] Fion S. Yeung, Jacob Y. Ho, Y. W. Li, F. C. Xie, Ophelia K. Tsui, P. Sheng, and H. S. Kwok, Appl. Phys. Lett. 88, 051910 (2006).
[49] Jacob Y. L. Ho, V. G. Chigrinov, and H. S. Kwok, Appl. Phys. Lett. 90, 243506 (2007).
[50] T.-J. Chen and K.-L. Chu, Appl. Phys. Lett. 92, 091102 (2008).
[51] S. Valyukh, I. Valyukh, V. Chigrinov, H. S. Kwok, and H. Arwin, Appl. Phys. Lett. 97, 231120 (2010).
[52] Andy Y.-G. Fuh, C.-K. Liu, K.-T. Cheng, C.-L. Ting, C.-C. Chen, Paul C.-P. Chao, and H.-K. Hsu, Appl. Phys. Lett. 95, 161104 (2009).
[53] N. Yamada, M. Okamoto, and S. Kozaki, U.S. Patent 6 175 398, Jan. 16, 2001.
[54] S. Zimmerman, K. Beeson, M. McFarland, J. Wilson, T. J. Creedle, K. Bingaman, P. Ferm, and J. T. Yardley, SID Tech. Digest 26, 793 (1995).
[55] M. McFarland, S. Zimmerman, K. Beeson, J. Wilson, T. J. Creedle, K. Bingaman, P. Ferm, and J. T. Yardley, Asia Display`95, p739 (1995).
[56] C.-K. Liu, C.-L. Ting, M.-S. Li, Andy Y.-G. Fuh, and K.-T. Cheng, J. Display Technol. 7, 520 (2011).
[57] S.-T.Wu, R. Lu, Q. Hong, and T. X.Wu, U.S. Patent 7 295 274, Nov. 13, 2007.
[58] J.-H. Park, J.-H. Lee, D.-H. You, and S.-D. Lee, Mol. Cryst. Liq. Cryst. 371, 231 (2001).
[59] J.-Y. Hwang, K.-J. Lee, D.-S. Seo, and T.-H. Kim, Jpn. J. Appl. Phys. 42, 672 (2003).
[60] S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, J. Appl. Phys. 108, 033101 (2010).
[61] Y.-Y. Tzeng, S.-W. Ke, C.-L. Ting, A. Y.-G. Fuh, and T.-H. Lin, Opt. Express 16, 3768 (2008).
[62] H. Ren, Y.-H. Lin, and S.-T.Wu, Appl. Phys. Lett. 89, 051114 (2006).
[63] P. Yeh, J. Opt. Soc. Amer. 72, 507 (1982).
[64] C. Gu and P. Yeh, J. Opt. Soc. Amer. A 10, 966 (1993).
[65] G. Kutas, H.-K. Choh, Y. Kwak, P. Bodrogi, and L. Czúni, J. Electron. Imaging 15, 023002 (2006).
[66] C.-K. Liu, K.-T. Cheng, and Andy Y.-G. Fuh, Appl. Phys. Lett. 98, 041106 (2011).
[67] P. V. Shibaev, R. L. Sanford, D. Chiappetta, V. Milner, A. Genack, and A. Bobrovsky, Opt. Express 13, 2358 (2005).
[68] K.-T. Cheng, C.-K. Liu, C.-L. Ting, and A. Y.-G. Fuh, Opt. Commun. 281, 5133 (2008).
[69] K.-T. Cheng, C.-K. Liu, C.-L. Ting, and A. Y.-G. Fuh, Opt. Express 15, 14078 (2007).
[70] J. Hwang, M.-H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, Nature Mater. 4, 383 (2005).
[71] S.-Y. Lu and L.-C. Chien, Appl. Phys. Lett. 91, 131119 (2007).
[72] T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, Phys. Rev. E 61, 4007 (2000).
[73] Q. Wang, J. O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, Jpn. J. Appl. Phys. 44, 3115 (2005).
[74] S.-W. Kang, S. Sprunt, and L.-C. Chien, Appl. Phys. Lett. 76, 3516 (2000).
[75] T.-H. Lin, Y. Huang, Y. Zhou, A. Y.-G. Fuh, and S.-T. Wu, Opt. Express 14, 4479 (2006).
[76] F. Zhang and D.-K. Yang, Phys. Rev. E 66, 041701 (2002).
[77] M. Zapotocky, L. Ramos, P. Poulin, T. C. Lubensky, and D. A. Weitz, Science 283, 209 (1999).
[78] I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, J. Appl. Phys. 81, 3007 (1997).
[79] I. I. Kim, B. McArthur, and E. Korevaar, Proc. SPIE 4214, 26 (2001).