簡易檢索 / 詳目顯示

研究生: 陳柏翰
Chen, Bo-Han
論文名稱: 二維壓縮機葉片翼型之數值模擬
Numerical Simulations of 2D Compressor Blade Airfoil
指導教授: 吳毓庭
Wu, Yu-Ting
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 60
中文關鍵詞: 計算流體力學壓縮機葉片紊流模型Simple演算法OpenFOAM
外文關鍵詞: CFD, Compressor blades, Turbulence Model, simple algorithm, OpenFOAM
相關次數: 點閱:117下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究目的是使用開源模擬軟體OpenFOAM中的Simple演算法以及k-ω紊流模型對CD葉片及DCA葉片兩種壓縮葉片進行二維模擬分析觀測葉片表面的壓力係數及垂直壁面的數度分布,並與實驗結果與starCCM+結果相互比較,以驗證OpenFOAM模擬對壓縮葉片模擬有一定精確性。CD葉片以葉片上游延伸0.5倍的弦長葉片下游延伸一倍的弦長做為模擬的計算區域並以入流速度85 m/s,入射角為40、43.4、46度三種角度為入流條件進行模擬。結果顯示壓力係數無論入射角大小皆與實驗結果具有一致性,無論在葉片前緣或後緣壓力係數趨勢皆與實驗相同,速度分布在在入射角40及43.4度在葉片前段和中段皆有與實驗值相近的結果,但尾端在邊界層厚度與實驗結果有較大的誤差,因在葉片尾端有較大的逆向壓力梯度會造成k-ω模型的預測誤差,但與相同會發生此現象的StarCCM+相比OpenFOAM結果較為接近實驗值。而入射角為46度時在葉片前緣處發生分離氣泡,因此在接近接近壁面會有回流現象而模擬也有模擬出此現象,在葉片尾端發生微小分離生成回流區且具有強大的逆向壓力梯度造成模擬的計算誤差,而在邊界層內的模擬速度分布預測低於實驗值。DCA葉片計算流場同樣設定為葉片向上游延伸0.5倍的弦長葉片下游延伸一倍的弦長做為模擬的計算區域,並以攻角為5度入流速度33.11m/s的情況進行模擬,模擬在壓力係數結果整體結果與實驗相近,但在葉片上半部前緣位置得到的結果較實驗值及StarCCM+值低,速度分布在表面速度分布在葉片弦長2.6%有模擬出分離氣泡的產生,但因為對分離氣泡預測過大導致回流現象較實驗嚴重,而前段至中段的位置OpenFOAM在邊界層內的速度低於實驗結果,而StarCCM+除了有相同的問題外在邊界層厚度也有較大的誤差,而葉片尾端模擬因預測過大的分離現象導致預測出來的邊界層過厚,但整體結果OpenFOAM有較StarCCM+接近實驗的結果。而在葉片下半部模擬結果與實驗值幾乎重合,因此對CD與DCA兩壓縮葉片模擬具有一定的準確度。

    The purpose of this paper is to use the Simple algorithm in the open source simulation software OpenFOAM and the k-ω SST turbulence model to carry out two-dimensional simulation analysis of two compressed blades, CD blade and DCA blade. The pressure coefficient of the CD blade at three incident angles of 40, 43.4 and 46 degrees is consistent with the experimental results, and the velocity distribution at the incident angle of 40 and 43.4 degrees is similar to the experimental value at the front and middle sections of the blade, but the tail end is at There is a large error between the thickness of the boundary layer and the experimental results, the OpenFOAM results are closer to the experimental values. When the incident angle is 46 degrees, there will be a backflow phenomenon at the leading edge of the blade close to the wall. The simulated velocity distribution in the boundary layer at the blade tail is predicted to be lower than the experimental value. The overall results of the pressure coefficient of the DCA blade are similar to the experimental results. The speed of OpenFOAM in the boundary layer from the front to the middle is lower than the experimental results. The predicted boundary layer is too thick at the tail end of the blade. The simulation results in the lower half of the blade almost coincide with the experimental values. OpenFOAM is closer to experimental results than starCCM+ and therefore has a certain accuracy for blade simulation.

    摘要 I 誌謝 VIII 目錄 IX 圖目錄 XI 表目錄 XIII 符號說明 XIV 第一章 緒論 1 1-1前言 1 1-2 文獻回顧 2 1-2-1 OpenFOAM介紹 2 1-2-2 葉片幾何模型 4 1-2-3 紊流模型選用 5 1-3 探討主題方法 7 1-4 本文架構 8 第二章 理論與數值方法 9 2-1 理論模式建立 9 2-1-1 基本假設 9 2-1-2 流場統御方程式及紊流模型 9 2-2 數值方法 11 2-2-1 有限體積法 11 2-2-2 SIMPLE演算法 12 第三章 模型建構與網格驗證 16 3-1 模擬工具 16 3-2 網格生成方法介紹 16 3-2-1 blockMesh 17 3-2-2 snnappyHexMesh 17 3-2-3 extrudeMesh 19 3-3 CD葉片模型介紹 20 3-3-1 CD葉片幾何 20 3-3-2 CD邊界條件 21 3-4 DCA葉片模型 22 3-4-1 DCA葉片幾何 22 3-4-2 DCA葉片邊界條件 23 3-5 網格測試 24 3-5-1 CD葉片網格測試 24 3-5-2 DCA葉片網格測試 29 第四章 結果與討論 33 4-1 CD葉片模擬結果 33 4-1-1 CD葉片壓力係數模擬結果 33 4-1-2 CD葉片速度分布模擬結果 35 4-2 DCA葉片模擬結果 48 4-2-1 DCA葉片壓力係數模擬結果 48 4-2-2 DCA葉片速度分布模擬結果 49 第五章 結論 56 參考文獻 58

    [1] 施旻伸, "可準確計算壓縮機流場的紊流模型之研究" ,2018.
    [2] Rahal Joshi, "The Foam version Confusion" , Retrieved from http://cfdpeople.blogspot.com/2016/07/the-foam-version-confusion.html, 2016.
    [3] Y. Elazar, "A mapping of the viscous flow behavior in a controlled diffusion compressor cascade using laser doppler velocimetry and preliminary evaluation of codes for the prediction of stall," Monterey, 108 California. Naval Postgraduate School, 1988.
    [4] Y. Elazar and R. Shreeve, "Viscous flow in a controlled diffusion compressor cascade with increasing incidence," Journal of Turbomachinery, vol. 112, no. 2, pp. 256-265, 1990.
    [5] Y. K. Ho, G. Walker, and P. Stow, "Boundary layer and Navier-Stokes analysis of a NASA controlled-diffusion compressor blade," in ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition, 1990: American Society of Mechanical Engineers.
    [6] S. Deutsch and W. C. Zierke, "The Measurement of Boundary Layers on a Compressor Blade in Cascade," PENNSYLVANIA STATE UNIV UNIVERSITY PARK APPLIED RESEARCH LAB,1986.
    [7] W. Zierke and S. Deutsch, "The Measurement of Boundary Layers on a Compressor Blade in Cascade. NASA C.R.-185118.," 1989.
    [8] T. Arima, T. Sonoda, M. Shirotori, A. Tamura, and K. Kikuchi, "A Numerical Investigation of Transonic Axial Compressor Rotor Flow Using a Low-Reynolds-Number k-ε Turbulence Model," Journal of Turbomachinery, vol. 121, pp. 44-58, 1999.
    [9] K. Y. Chien, "Predictions of channel and boundary-layer flows with a low-Reynolds-number turbulence model," AIAA journal, vol. 20, no. 1, pp. 33-38, 1982.
    [10] R. Chima, "A k-omega turbulence model for quasi-three-dimensional turbomachinery flows," in 34th Aerospace Sciences Meeting and Exhibit, pp. 248, 1995.
    [11] D. C. Wilcox, "Reassessment of the scale-determining equation for advanced turbulence models," AIAA journal, vol. 26, no. 11, pp. 1299- 1310, 1988.
    [12] K. L. Suder, R. V. Chima, A. J. Strazisar, and W. B. Roberts, "The Effect of Adding Thickness and Roughness to a Transonic Axial Compressor Rotor", 1994.
    [13] R. J. Boyle, "Navier-Stokes Analysis of Turbine Blade Heat Transfer", 1990.
    [14] J. Dunham, "CFD validation for propulsion system components (la validation CFD des organes des propulseurs)," ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT NEUILLY-SUR-SEINE (FRANCE),1998.
    [15] G. Gerolymos, J. Neubauer, V. Sharma, and I. Vallet, "Improved prediction of turbomachinery flows using near-wall Reynolds-stress model," in ASME Turbo Expo 2001: Power for Land, Sea, and Air, pp. 86-99: American Society of Mechanical Engineers, 2001.
    [16] G. Gerolymos and I. Vallet, "Wall-normal-free Reynolds-stress model for rotating flows applied to turbomachinery," AIAA journal, vol. 40, no. 2, pp. 199-208, 2002.
    [17] J. A. Bourgeois, R. J. Martinuzzi, E. Savory, C. Zhang, and D. A. Roberts, "Assessment of turbulence model predictions for an aero-engine centrifugal compressor," Journal of Turbomachinery, vol. 133, no. 1, pp. 011025, 2011.
    [18] W. P. Jones and B. E. Launder , " The prediction of laminarization with a two-equation model of turbulence. ", Int. J. Heat Mass Transfer, 15, 301-314,1972.
    [19] F. R. Menter. Zonal, "two equation k-omega turbulence models for aerodynamics flows.", American Institute of Aeronautics and Astronautics, 1993.
    [20] D. Wilcox, "Reassessment of the scale-determining equation for advanced turbulence models. ", AIAA Journal, vol. 26, no. 11, pp. 1299–1310,1988.
    [21] J. E. P. Monteagudo and A. Firoozabadi, "Control volume method for numerical simulation of two phase immiscible flow in two and three dimensional discrete fractured media.", 2004.
    [22] S. V. Patankar and D. B. Spalding , "A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. " , 1972.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE