| 研究生: |
林宜賢 Lin, Yi-hsien |
|---|---|
| 論文名稱: |
攝影機自動對焦技術與強韌模式辨認之研究 A Study on Camera Autofocusing and Robust Template Matching |
| 指導教授: |
陳進興
Chen, Chin-Hsing |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 次像素 、參數樣版向量 、環形投影轉換 、自動對焦 、尖銳函數 |
| 外文關鍵詞: | Subpixel, Ring projection transform, Sharpness function, Parametric template vector, Autofocus |
| 相關次數: | 點閱:121 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出三種不同的方法分別使用在三種不同的應用上。在第一種方法裡,我們提出一種以小波轉換為基礎的攝影機自動對焦新技術,。因為小波模組可以保留邊界的資訊及對雜訊有極強的免疫力等優點。我們的方法裡的尖銳函數(sharpness function)的優點是其計算值分佈呈現出嚴謹單調(monotonic),因此不會有區域性最大值(local maximum)的發生。實驗結果證實我們的方法可以讓攝影機成功的自動對焦。再者,方法觀念容易瞭解,容易完成且有效率。故適用於實際的自動對焦系統上。
在第二種方法裡,我們提出可以克服影像平移、旋轉及尺度大小有變化的模式辨識新方法。本方法首先使用環形投影轉換(ring projection transform),將二維影像樣版(template)轉換成一維的信號。環形投影轉換的優點是擁有可以克服影像旋轉和降低計算複雜度等特性。接著將已轉換的不同大小尺度的一維樣版信號建構成一個一維參數樣版向量(parametric template vector),再利用此參數樣版向量來做模式辨認的計算。本方法在模式辨認上不僅可以解決影像旋轉的問題,也可以克服影像尺度的變化。除此之外,本方法觀念容易瞭解,容易完成,且只需一張樣版影像作訓練。實驗證實本方法的計算速度比參數樣版(parametric template)法快約15倍,辨識成效也比參數樣版法好。本方法除了可以解決影像平移、旋轉及尺度大小有變化的問題,還可以估算出待測影像尺度變化的大小。含高斯雜訊的實驗證實本方法的確具有強韌性。本方法可以用在線上待測物影像存在平移、旋轉及尺度大小變化的即時辨識系統上。
最後部分,我們結合參數樣版方法和環形投影轉換方法,提出一個在有旋轉影像辨識定位上可達到次像素(subpixel)精確度的模式辨識方法。本方法因沒有涉及疊代運算,故很有效率且容易完成。模擬實驗結果證實本方法在待測影像有旋轉的情況下仍擁有次像素的高精確度。在尋找兩個目標物的距離的實際景物實驗裡,結果也顯示當待測影像有旋轉及平移的情況下,也可達到次像素的高精確度。這表示本方法在高精密度且待測物會旋轉的線上檢測系統上,確實可行。
This thesis proposes three different approaches for three different applications. In the first part of our approaches, a novel autofocusing technique based on the wavelet transform is proposed. Because wavelet modulus can preserve edges more precisely and it is almost noise free. The merits of our approach are that the distribution of sharpness function is strictly monotonic and global maximum is well defined. Experimental results show that our approach can locate the best focus successfully. Furthermore, our approach is conceptually simple, easy for implementation and very efficient. It is suitable for practical systems.
For the second part of our approaches, a new method of the template matching, invariant to image translation, rotation and scaling, is proposed. In the first step of the approach, the ring projection transform (RPT) process is used to convert a 2-D template in a circular region into a 1-D gray-level signal as a function of radius. The advantages of the RPT process are that it owns the characteristic of rotation invariance and reduces the computational complexity of normalized correlation (NC). Then, the template matching is performed by constructing a parametric template vector (PTV) of the 1-D gray-level signal with differently scaled templates of the object. The merits of our approach are that it not only obtains rotation invariance, but also scale invariance. Additionally, our approach is conceptually simple, easy to implement and only one training image is needed for the training phase. Experimental results show that the computational time of the proposed approach is about fifteen times faster and the performance is better than the parametric template (PT) method in the image rotation or scaling. Moreover, our approach not only enjoys high accuracy under the changes of translation, rotation and scale, but also can estimate the scaling value of the target object in the input scene. Experiments with Gaussian noise demonstrate that the proposed algorithm is robust to detect the target object with the changes of translation, orientation and scale. This indicates that our approach is suitable for on-line template matching with scene translation, rotation and scaling.
In the last part of our approaches, a new subpixel template matching approach that combines the parametric template method and the ring projection transform process is proposed. It not only achieves subpixel accuracy in location, but also offers rotation invariance in the subpixel template matching. Furthermore, our approach is conceptually simple, easy to implement, and very efficient because no iterative steps are involved. The simulated results show that our approach enjoys very high precision in the presence of image rotations. Experiments with real-world scenes demonstrate that the proposed method can reach subpixel accuracy for finding the distance between two target objects in the presence of rotations and translations. This indicates that our approach is suitable for accurate on-line template matching with scene rotations and translations.
References
1. A. Abu-Naser, N. P. Galatsanos, M. N.Wernick, and D. Schonfeld, “Object recognition based on impulse restoration using the expectation maximization algorithm,” Journal of the Optical Society of America A, Vol. 15, pp. 2327-2340, 1998.
2. J. K. Aggarwal, L. S. Davis, W. N. Martin, “Correspondence process in dynamic scene analysis,” Proc IEEE. Vol. 69, No. 5, pp. 562-572, 1981.
3. M. Antonini, M. Barlaud, P. Mathieu and I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. On Image Processing. Vol. 1, No. 2, pp. 205-220, 1992.
4. M. Bahoura and J. Rouat, “Wavelet speech enhancement using the Teager energy operator,” IEEE Signal Processing Letters, Vol. 8, No. 1, pp. 10–12, January 2001.
5. D. I. Barnea, H. F. Silverman, “A class of algorithms for fast digital image registration,” IEEE Trans. Computers. Vol. 21, pp. 179-186, 1972.
6. C. A. Bernstein, L. N. Kanal, D. Lavin, and E. C. Olson, “A geometric approach to subpixel registration accuracy,” Comput. Vis. Graph. Image Process.. Vol. 40, pp. 334-360, 1987.
7. G. Beylkin, “On the representation of operators in bases of compactly supported wavelets,” SIAM Journal on Numerical Analysis.Vol. 29, No. 6, pp. 1716-1740, 1992.
8. F. Boddeke, L. Vliet, H. Netten and L. Young, ”Autofocusing in microscopy based on the OTF and sampling,” Bioimaging. Vol. 2, pp. 193–203, 1994.
9. L. G. Brown, “A survey of image registration techniques,” ACM Computing Surveys. Vol. 24, No. 4, pp. 326-376, 1992.
10. P. J. Bryanston-Cross and Z. Wang, "Camera focusing based on fringe pattern matching ," Applied Optics. Vol. 36, No. 25, pp. 6498-6502, 1997.
11. M. A. Bueno, J. Álvarez-Borrego, L. Acho, and M. C. Chávez-Sánchez, “Fast autofocus algorithm for automated microscopes,” Optical Engineering. Vol. 44, No. 6, pp. 063601, 2004.
12. K. R. Castleman. Digital image processing, Prentice-Hall, NewJersey, 1996.
13. S. Chang, Y. Kwon and S. Yang, “Speech feature extracted from adaptive wavelet for speech recognition,” Electronics Letters. Vol. 34, No. 23, pp. 2211-2213, 1998.
14. D. J. Chen, F. P. Chiang, Y. S. Tan and H. S. Don, “Digital speckle-displacement measurement using a complex spectrum method,” Appl. Opt. Vol. 32, pp. 1839–1849, 1993.
15. Q. Chen, M. Defrise, and F. Deconinck, “Symmetric phase-only matched filtering of fourier-mellin transforms for image registration and image recognition,” Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, No. 12, pp. 1156-1168, Dec. 1994.
16. N. N. K. Chern, P. A. Neow, and J. M. H. Ang, “Practical issues in pixel-based autofocusing for machine vision," in Proc. IEEE Int. Conf. on Robotics and Automation. Vol. 3, pp. 2791-2796, May 21-26, 2001.
17. K. S. Choi, S. J. Ko. ”New autofocusing technique using the frequency selective weighted median filter for video cameras,” Int. Conf. On Consumer Electronics, pp.160-161, Seul, Korea 1999.
18. M. S. Choi, W. Y. Kim, “A novel two stage template matching method for rotation and illumination invariance,” Pattern Recognition, Vol. 35, pp. 119-129, 2002.
19. M. S. Choi and W. Y. Kim, “A novel two stage template matching method for rotation and illumination invariance,” Pattern Recognition. Vol. 35, pp. 119-129, 2002.
20. A. A. Cole-Rhodes, K. L. Johnson, J. LeMoigne, and I. Zavorin, “Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient,” IEEE Trans. on Image Processing, Vol. 12, No. 12, pp. 1495-1511, 2003.
21. X. Dai and S. Khorram, “A feature-based image registration algorithm using improved chain-code representation combined with invariant moments,” IEEE Transactions on Geoscience and Remote sensing. Vol. 37, No. 5, pp. 2351-2362, 1999.
22. I. Daubechies, “Ten Lectures on Wavelets,” CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1992.
23. E. R. Davies, Machine Vision: Theory, Algorithms, Practicalities. Academic Press Limited. 1990.
24. R. M. Dufour, E. L. Miller and N. P. Galatsanos, “Template matching based object recognition with unknown geometric parameters,” IEEE Transactions on Image Processing, Vol. 11, No. 12, pp. 1385-1396, 2002.
25. V. N. Dvorchenko, “Bounds on (deterministic) correlation functions with applications to registration,” IEEE Trans Pattern Anal Mach Intell PAMI-5. Vol. 2, pp. 206–213, 1983.
26. J. Flusser, T. Suk, S. Saic, “Image feature invariant with respect to blur,” Pattern Recognition. Vol. 28, No. 11, pp. 1723-1732, 1995.
27. J. Flusser, T. Suk, “Degraded image analysis: an invariant approach,” IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 20, No. 6, pp. 590–602, 1998.
28. H. Foroosh, J. B. Zerubia, and M. Berthod, “Extension of phase correlation to subpixel registration,” IEEE Trans. Image Process. Vol. 11, No.3, pp. 188-200, 2002.
29. K. Fredriksson, V. Makinen and G. Navarro, “Rotation and lighting invariant template matching,” Information and Computation. Vol. 205, pp. 1096-1113, 2007.
30. C. Garcia, G. Zikos, G. Tziritas, “Wavelet Packet Analysis for Face Recognition,” Image and Vision Computing. Vol. 18, pp. 289-297, 2000.
31. S. S. Gleason, M. A. Hunt, and W. B. Jatko, “Subpixel measurement of image features based on paraboloid surface fit,” in Machine Vision Systems Integration in Industry, Proc. SPIE. Vol. 1386, pp. 135-144, 1990.
32. R. C. Gonzalez and R. E. Woods, Digital Image Processing, Second Edition, Prentice Hall, 2002.
33. A. Goshtasby, S. H. Gage, and J. F. Bartholic, “A two-stage cross correlation approach to template matching,” IEEE Trans. Pattern Anal. Mach. Intell. Vol. 6, pp. 374-378, 1984.
34. A. Goshtasby, “Template matching in rotated images,” IEEE Trans. Pattern Anal. Mach. Intell., Vol. 7, No. 3, pp. 338-344, 1985.
35. A. Goshtasby, G. C. Stockman, and C. V. Page, “A region-based approach to digital image registration with subpixel accuracy,” IEEE Trans. Geosci. Remote Sensing, Vol. 24, No. 3, pp. 390-399, 1986.
36. H. Guo, Introduction to wavelets and wavelet transforms: A Primer, Prentice Hall, Upper Saddle River, NJ, 1998.
37. D. J. Hall, R. M. Endlish, D. E. Wolf and A. E. Brain, “Objective methods for registering landmarks and determining cloud motion from satellite data,” IEEE Trans. Comput. Vol. C-21, pp. 768-776, July 1972.
38. H. S. Hou, and H. C. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoustics, Speech, and Signal Processing. Vol. ASSP-26, No.6, pp.508-517, Dec. 1978.
39. J. Hsieh, H. Liao, K. Fan, M. Ko, and Y. Hung, “Image registration using a new edge-based approach,” Computer Vis. Image Underst.. Vol. 67, No. 2, pp. 112-130, 1997.
40. M. K. Hu, “Visual pattern recognition by moment invariants,” IRE Trans. Inform. Theory. Vol. IT-8, No. 2, pp. 179-187, 1962.
41. T. S. Huang. Image sequence analysis, Springer, Berlin, 1981.
42. R. A. Jarvis, "Focus Optimization Criteria for Computer Image Processing," Microscope. Vol. 24, No. 2, pp. 163-180, 1976.
43. S. Kadambe, G. F. Boudreaux-Bartels, “Applications of the wavelet transform for pitch detection of speech signals,” IEEE Transactions on Information Theory, Vol. 38, No. 2, pp. 917-924, 1992.
44. A. Kashko, H. Buxton, B. F. Buxton, and D. A. Castelow, “Parallel matching and reconstruction algorithms in computer vision,” Parallel Comput. Vol. 8, pp. 3-17, 1988.
45. N. Kehtarnavaz and H. J. Oh, “Development and real-time implementation of a rule-based auto-focus algorithm,” Real-Time Imag. Vol. 9, pp. 197-203, 2003.
46. D. J. Kelly, E. U. Azeloglu, P. V. Kochupura, G. S. Sharma and G. R. Gaudette, “Accuracy and reproducibility of a subpixel extended phase correlation method to determine micron level displacements in the heart,” Medical Engineering and Physics Vol. 29, No. 1, pp. 154-162, January, 2007.
47. R. G. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. 29, No.6, pp. 1153-1160, Dec. 1981.
48. A. Khotanzad and Y. H. Hong, “Invariant image recognition by Zernike moments,” IEEE Trans. Pattern Anal. Machine Intell., Vol. 12, pp. 489-497, May 1990.
49. E. Krotkov, "Focusing," International Journal of Computer Vision. Vol. 1, pp. 223-237, 1987.
50. E. P. Krotkov, Active Computer Vision by Cooperative Focus and Stereo. New York: Springer Verlag. 1989.
51. J. H. Lee, K. S. Kim, B. D. Nam, J. C. Lee, Y. M. Kwon, and H. G. Kim, “Implementation of a passive automatic focusing algorithm for digital still camera,” IEEE Trans. Consumer Electron. Vol. 41, pp. 449-454, 1995.
52. Y. Lee, S. I. JANG, K. CHUNG, D. LEE, W. KIM and C. W. LEE, “A fuzzy control processor for automatic focusing,” IEEE Trans. on Consumer Electronics, Vol. 40, No. 2, pp. 138–144, May 1994.
53. J. S. Lee, Y. Y. Jung, B. S. Kim, S. J. Ko, “An advanced video camera system with robust AF, AE, and AWB control,” IEEE Transactions on Consumer Electronics, Vol. 47, No. 3, pp. 694-699, August 2001.
54. H. Lester and S. R. Arridge, “Survey of hierarchical nonlinear medical image registration,” Pattern Recognition. Vol. 32, No. 1, pp. 129-149, 1999.
55. J. Li, “Autofocus searching algorithm considering human visual system limitations,” Optical Engineering, Vol. 44, No. 11, pp. 113201, November 2005.
56. S. X. Liao and M. Pawlak, “On image analysis by moments,” IEEE Trans. Pattern Analysis Machine Intelligence, Vol. 18, No. 3, pp. 254-266, 1996.
57. G. Lighart and F. Groen, “A comparison of different autofocus algorithms,” Proc. Int. Conf. Patt. Recog. pp. 597–600, 1982.
58. Y. H. Lin, C. H. Chen, “An autofocusing technique using the wavelet transform,” 2006 National Symposium on Telecommunications, pp. 1-6, Dec. 01-02, 2006.
59. Y. H. Lin, C. H. Chen and C. C. Wei, “A new approach to fast template matching with rotation invariance using ring code matching,” 19th IPPR Conference on Computer Vision, Graphics and Image Processing, pp. 1297-1301, Aug. 13-15, 2006.
60. J. B. A. Maintz and M. A. Viergever, “A survey of medical image registration,” Medical Image Analysis. Vol. 2, pp. 1-36, 1998.
61. S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation”, IEEE Transactions on Pattern Analysis Machine Intelligence. Vol. 11, No.7, pp. 674-693, 1989.
62. S. G. Mallat, Multiresolution approach to wavelets in computer vision, 2nd Edition, Springer, New York, 1989.
63. S. Nayar, Y. Nakagawa, “Shape from focus,” IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 16, No. 8, pp. 824–831, 1994.
64. K. Ooi, K. Izumi, M. Nozaki, and I. Takeda, “An advanced autofocus system for video camera using quasi condition reasoning,” IEEE Trans. on Consumer Electronics. Vol. 36, pp. 526–529, Aug. 1990.
65. L. Oriat and E. Lantz, “Subpixel detection of the center of an object using a spectral phase algorithm on the image,” Pattern Recognition. Vol. 31, pp. 761–771, 1998.
66. J. A. Parker, R. V. Kenyon and D. E. Droxel, “Comparison of interpolating methods for image resampling,” IEEE Trans Med Imaging MI-2. Vol. 1, pp. 31–39, 1983.
67. J. J. Pearson, D. C. Hines and S. Golosman, “Video-rate image correlation processor,” SPIE. Vol. 119, pp. 197–205, 1977.
68. F. Pedersini, A. Sarti, and S. Tubaro, “Improving the performance of edge localization techniques through error compensation,” Signal Process. Image Commun. Vol. 12, pp. 33-47, 1998.
69. R. J. Prokop and A. P. Reeves, “A survey of moment-based techniques for unoccluded object representation and recognition,” CVGIP Graph. Models Image Process, Vol. 54, No. 5, pp. 438-460, 1992.
70. B. S. Reddy and B. N. Chatterji, “An fft-based technique for translation, rotation, and scale-invariant image registration,” IEEE Transactions On Image Processing. Vol. 5 No. 8, pp. 1266-1271, 1996.
71. A. Rosenfeld, A. Kak, Digital image processing, 2nd Edition, Academic Press, Orlando, 1982.
72. J. F. Schlag, A. C. Sanderson, C. P. Neumann, and F. C. Wimberly, “Implementation of Automatic Focusing Algorithms for a Computer Vision System with Camera Control,” Technical Report CMU-RI-TR-83-14, Carnegie Mellon University, August, 1983.
73. W. M. Silver, “Normalized correlation search in alignment, gauging, and inspection,” Proc. SPIE. Vol. 755, pp. 23-34, 1987.
74. H. S. Stone, M. T. Orchard, E. C. Chang, and S. A. Martucci, “A fast direct Fourier-based algorithm for subpixel registration of images,” IEEE Trans. Geosci. Remote Sens. Vol. 39, No. 10, pp. 2235-2243, 2001.
75. M. Subbarao, T. C. Wei. ”Depth from defocus and rapid autofocusing: a practical approach,” Proc. CVPR, pp. 773-776, 1992.
76. M. Subbarao, T. Choi, and A. Nikzad, "Focusing techniques," Optical Engineering. Vol. 32, No. 11, pp. 2824-2836, November 1993.
77. M. Subbarao and J. K. Tyan, "The optimal focus measure for passive autofocusing and depth-from-focus," Proc. SPIE Conf. Videometrics IV. Vol. 2598, pp. 89-99, Philadelphia, October 1995.
78. M. Subbarao and J.K. Tyan, "Root-mean square error in passive autofocusing and 3D shape recovery," Proc. SPIE Conf., Three-Dimensional Imaging and Laser-Based Systems for Metrology and Inspection II. Vol. 2909, pp. 162-177, Boston, November 1996.
79. M. Subbarao, J. Tyan, “Selecting the optimal focus measure for autofocusing and depth-from-focus,” IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 20, No. 8, pp. 864-870, AUGUST 1998.
80. K. Tanaka, M. Sano, S. Ohara, and M. Okudaira, “A parametric template method and its application to robust matching,” IEEE Conference on Computer Vision and Pattern Recognition, Vol. 1, pp. 620–627, June 2000.
81. Y. Y. Tang, H. D. Cheng, and C. Y. Suen, “Transformation-ring-projection (TRP) algorithm and its VLSI implementation,” International Journal of Pattern Recognition and Artificial Intelligence. Vol. 5, pp. 25-56, 1991.
82. Y. Y. Tang, B. F. Li, H. Ma, and J. Liu, “Ring-projection-wavelet-fractal signatures: a novel approach to feature extraction,” IEEE Trans. Circuits Syst., II: Analog Digital Signal Process. Vol. 45, pp. 1130-1134, 1998.
83. M. R. Teague, “Image analysis via the general theory of moments,” J. Opt. Soc. Amer., Vol. 70, pp. 920-930, 1980.
84. J. M. Tenenbaum, “Accommodation in Computer Vision,” Ph. D. Dissertation, Stanford University. November, 1970.
85. P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. Vol. 7, No. 1, pp. 27-41, 1998.
86. D. M. Tsai, B. Hsiao, “Automatic surface inspection using wavelet reconstruction,” Pattern Recognition. Vol. 34, pp. 1285-1305, 2001.
87. D. M. Tsai, and C. H. Chiang, “Rotation-invariant pattern matching using wavelet decomposition,” Pattern Recognition Letters, Vol. 23, pp. 191-201, 2002.
88. D. M. Tsai and Y. H. Tsai, “Rotation-Invariant Pattern Matching with Color Ring-Projection,” Pattern Recognition, Vol. 35, pp. 131-141, 2002.
89. D. M. Tsai and Y. H. Tsai, “Defect Detection in Textured Surfaces Using Color Ring-Projection Correlation,” Machine Vision and Applications, Vol. 13, pp.194-200, 2003.
90. F. Ullah and S. Kanekoi, “Using orientation codes for rotation-invariant template matching,” Pattern Recognition. Vol. 37, No. 2, pp. 201-209, 2004.
91. M. Unser, A. Aldroubi, and M. Eden, “B-spline signal processing: part 1-theory,” IEEE Trans. Signal Process. Vol. 41, pp. 821-833, 1993.
92. Z. Wang, P. J. Bryanston-Cross, and D. J. Whitehouse, “Phase difference determination by fringe pattern matching,” Opt. Laser Technol. Vol. 28, pp. 417-422, 1996.
93. Z. Wang, M. S. Graca, P. J. Bryanston-Cross and D. J. Whitehouse, “Phase-shifted image matching algorithm for displacement measurement,” Optical Engineering. Vol. 35, pp. 2327-2332, 1996.
94. L. G. Weiss, “Wavelets and wideband correlation processing,” IEEE Signal Processing Magazine. Vol.1, pp. 13-32, 1994.
95. R. Wilson, A. D. Calway, E. R. S. Pearson, “A generalized wavelet transform for fourier analysis: The multiresolution fourier transform and its applications to image and audio signal analysis,” IEEE Transactions on Information Theory. Vol. 38, No.2, pp. 674-690, 1992.
96. R. Y. Wong, E. L. Hall, “Sequential hierarchical scene matching,” IEEE Trans. Comput. Vol. 27, pp. 359-366, 1978.
97. J. Wu, G. Zhou, and P. F. Shi, “Algorithm of subpixel image matching with high accuracy,” in Image Matching and Analysis, Proc. SPIE Vol. 4552, pp. 265-273, 2001.
98. P.C. Yuen, G.C. Feng and Y.Y. Tang, “Printed Chinese character similarity measurement using ring projection and distance transform,” International Journal of Pattern Recognition and Artificial Intelligence. Vol. 12, pp. 209–221, 1998.
99. Y. Zhang, Y. Zhang and C. Wen, “A new focus measure method using moments,” Image and Vision Computing. Vol. 18, pp. 959-965, 2000.
100. Q. Zheng, and R. Chellappa, “A computational vision approach to image registration,” IEEE Trans. Image Process. Vol. 2, No.3, pp. 311-325, 1993.
101. P. Zhou and K. E. Goodson, “Subpixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC),” Optical Engineering. Vol. 40, No. 8, pp. 1613–1620, 2001.
102. B. Zitová and J. Flusser, “Image registration methods: a survey,” Image and Vision Computing. Vol. 21, No. 11, pp. 997-1000, 2003.