| 研究生: |
鄒傳正 Tsou, Chuan-Cheng |
|---|---|
| 論文名稱: |
白色有機發光元件光電特性之研究 A Study of the Optoelectronic Performances in White Organic Light Emitting Diode |
| 指導教授: |
橫山明聰
Meiso Yokoyama 蘇炎坤 Su, Yan-Kuin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 148 |
| 中文關鍵詞: | 多層陰極 、多層保護膜 、全彩 、插入層 、雙電洞阻隔層 、白色有機發光元件 、有機發光元件 、複合區域 |
| 外文關鍵詞: | WOLED, OLED, inter-layer, multi-layers cathode (MLC), multi-passivation layers (MPLs), double hole-blocking layer (DHBL), recombination zone, full-color |
| 相關次數: | 點閱:121 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
在本論文中,大致上分為五部份:1. 利用多層陰極於綠色有機發光元件2. 藍色有機發光元件光電特性的探討3. 紅光有機發光元件光電特性的研究4. 互補色之白色有機發光元件光電特性的研究5. 使用多層保護膜與封裝技術於有機發光元件並探討三原色之白色有機發光元件。
首先,將陰極改為[CuPc/鋰/鋁]多層陰極應用於綠色有機發光元件。由於CuPc與鋰原子會發生氧化還原反應產生新物質進而降低介面能障使電子容易注入於有機材料中並加速電子的傳輸速率。如此可以增加有機發光元件的發光亮度與效率同時降低元件的操作電壓。並利用電子能譜儀(x-ray photoemission spectrometer (XPS))分析CuPc與鋰原子介面的變化,並探討有機發光元件的特性改善與此介面變化之間的關連性。
為了得到全彩的有機發光元件,開發高亮度高效率與低耗電的白色有機發光元件是必須的。然而要製作白色有機發光元件有兩種方法:一是使用紅、藍、綠三原色組成白色有機發光元件,二是使用藍色與黃-紅色之互補色製作白色有機發光元件。在本研究中,主要是使用第二種方式來製作白色有機發光元件。因此,藍色與黃-紅色有機發光元件是值得研究與開發的。
基於上述理由,在本研究中的第二部份,主要探討藍色有機發光元件的光電特性。利用插入層(inter-layer)與雙電洞阻隔層(double hole-blocking layer (DHBL))設計於藍色有機發光元件中,來改善藍色有機發光元件的光電特性。
在本研究中的第三部份,將電洞阻隔層(hole-blocking layer (HBL))設計於有機發光元件結構裡,利用摻雜黃-紅色螢光染料摻雜於發光層(emitting layer (EML))中,使其發出紅光,並探討載子的複合區域,在此一過程中,同時會產生發白光的白色有機發光元件。
在本研究中的第四部份,使用藍色與黃-紅色的螢光染料摻雜於發光層中,並利用電洞阻隔層與能量轉移使有機發光元件發出藍色與黃-紅色的混合色,同時調整掺雜濃度,以調整有機發光元件的發光。不同的掺雜濃度所產生發光的顏色也就跟著不同,最後製作出發白色的白色有機發光元件,其CIE座標位於(0.34,0.34)。
最後,使用多層保護膜(multi-passivation layers (MPLs))與封裝技術將有機發光元件封裝,並量測此元件的光電特性。而多層保護膜與封裝技術可以有效的防止水氣與氧氣進入有機材料中,避免有機材料遭受破壞,使得有機發光元件變得更穩定。另外,製作以紅、藍、綠三原色混合的白色有機發光元件。此一白色有機發光元件增加了發光亮度與效率並降低了元件的消耗電量。因此,白色有機發光元件的光電特性成功地且有效地改善了。
Abstract
This thesis deals with five topics in WOLED devices. The first is related to cathode by using [CuPc/Li/Al] multi-layers cathode (MLC) to improve the optoelectronic performances of the green-color OLED devices. The second topic regards blue-color OLED device’s optoelectronics performances. The third topic is chiefly concerning the recombination zone and optoelectronic characteristics in red-color OLED devices. The forth topic is probing into the optoelectronic properties of WOLED devices. And the last part of this work is considered that the multi-passivation layers (MPLs) and package system are used in OLED devices and the improvement of the optoelectronic performances in three primary color’s WOLED devices.
In the first part of this thesis, the research of the optoelectronic performances in the green OLED devices with [CuPc/Li/Al] multi-layers cathode (MLC) is the major topic. The better optoelectronic characteristics of the OLED devices will be obtained by growing the [CuPc/Li/Al] multi-layers cathode and using x-ray photoemission spectrometer (XPS) to analyze the role of the [CuPc/Li/Al] multi-layers cathode. In this investigation, the redox reaction will happen between the molecules of the CuPc and lithium and produces a new material, which can reduce the barrier height between organic material and CuPc/Li/Al multi-layers cathode and increase the efficiency of electron injection into the organic material. Therefore, it can increase the OLED device’s luminance and efficiency and reduce the OLED device’s driving voltage efficiently.
In this study, in order to obtain the full-color OLED devices, it is the major subject to investigate the higher luminance, higher efficiency, and lower power consumption white organic light emitting diode (WOLED) devices. In order to produce white light, there are two types WOLED device structures. The first one is that white light consists of three primary colors; the second one is the mixture of blue-color and yellow-red-color. In this work, the major research is that white color is composed of the mixture of blue-color and yellow-red-color. Hence, the blue-color and yellow-red-color OLED devices will be studied by modifying structures and treatments of the device.
In the second part of this work; for the reason, the blue-color OLED device structures will be designed and modulated and the optoelectronic characteristics of the blue-color OLED devices will be measured. Inter-layer and double hole-blocking layer (DHBL) will be introduced into blue-color OLED devices to improve the optoelectronic performances of the devices.
In the third part of this study; at the same time, the red-color OLED device structures will be devised and hole-blocking layer (HBL) will be introduced into the devices to tune color. The role of the HBL and the detail recombination zone of the carriers will be discussed. From this research, WOLED devices will be generated at the same time.
In the forth part of this work, the WOLED will be produced by the mixture of the blue-color and yellow-red-color. The yellow-red fluorescent dye will be doped into emitting layer (EML) and the device’s color will be altered by changing different doping concentration and energy transfer. With different doping concentration, the proportion of the blue-color and red-color will be modified and the WOLED device will be generated by using the mixture of blue-color and yellow-red-color successfully. The WOLED device emits white color and the CIE coordinates (x,y) are (0.34,0.34).
Finally, the multi-passivation layers (MPLs) and package system are used in OLED devices. Then, the stabilization of the optoelectronic performances on OLED devices will be measured. It is suggested that the MLPs and package technique on extending the stability of the OLED devices is due to the prevention of moisture and oxygen infiltrating into the organic materials successfully. In addition, the optoelectronic performances of WOLED devices will be improved by using the mixture of three primary colors. The luminance and efficiency of the WOLED devices will be increased efficiently and the power consumption will be reduced of the WOLED device’s successfully. The WOLED devices become more stable. Therefore, the improvement of the WOLED device’s optoelectronic performances is very successfully.
References
1.M. Pope, H. P. Kallmann, and P. Magnante, “Electroluminescence in organic crystals”, J. Chem. Phys., 38, 2042 (April, 1963).
2.C. W. Tang, and S. A. VanSlyke, “Organic electroluminescent diodes”, Appl. Phys. Lett., 51, 913 (September, 1987).
3.J. H. Burroughes, C. A. Jones, and R. H. Friend, “New semiconductor device physics in polymer diodes and transistors”, Nature, 335, 137 (1988).
4.J. H. Schon, A. Dodabalapur, C. Kloc, and B. Batlogg, “A light-emitting field-effect transistor”, Science, 290, 963 (2000).
5.J. H. Schon, and C. Kloc, “Fast organic electronic circuits based on ambipolar pentacene field-effect transistors”, Appl. Phys. Lett., 79, 4043 (2001).
6.J. H. Schon, “On the stability of organic field-effect transistor materials”, Appl. Phys. Lett., 79, 4163 (2001).
7.J. H. Schon, H. Meng, and Z. Bao, “Self-assembled monolayer organic field-effect transistors”, Nature, 413, 713 (2001).
8.J. H. Schon, and Z. Bao, “Organic insulator/semiconductor heterostructure monolayer transistors”, Appl. Phys. Lett., 80, 332 (2002).
9.H. S. Majumdar, A. Bandyopadhyay, A. Bolognesi, and A. J. Pal, “Memory device applications of a conjugated polymer: Role of space charges”, J. Appl. Phys., 91, 2433 (February, 2002).
10.S. A. Jenekhe, and S. Yi, “Efficient photovoltaic cells from semiconducting polymer heterojunctions”, Appl. Phys. Lett., 77, 2635 (October, 2000).
11.J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers”, Nature, 347, 539 (1990).
12.V. G. Kozlov, V. Bulovi, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices”, Nature, 389, 362 (1997).
13.J. H. Schon, C. Kloc, A. Dodabalapur, and B. Batlogg, “An organic solid state injection laser”, Science, 289, 599 (July, 2000).
14.P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, “Achieving full-color organic light-emitting devices for lightweight, flat-panel displays”, IEEE Transactions on Electron Devices, 44, 1188 (August, 1997).
15.W. Helfrich, and W. G. Schneider, “Recombination Radiation in Anthracene Crystals”, Phys. Rev. Lett., 14, 229 (1965).
16.R. H. Partridge, “Electroluminescence from polyvinylcarbazole films: 1. Carbazole cations”, Polymer, 24, 733 (1982).
17.D. Braun, and A.J. Heeger, “Visible light emission from semiconducting polymer diodes”, Appl. Phys. Lett., 58, 1982 (1991).
18.J. Kido, M. Kohda, M. Okuyama and K. Nagai, “Organic electroluminescent devices based on molecularly doped polymers”, Appl. Phys. Lett., 61, 761 (1992).
19.G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, “Flexible light-emitting diodes made from soluble conducting polymers”, Nature, 357, 477 (1992).
20.P. E. Burrows, S. R. Forrest, and M. E. Thompson, “Prospects and applications for organic light-emitting devices”, Current Opinion in Solid State & Materials Science, 2, 236 (April, 1997).
21.G. Gu, and S. R. Forrest, “Design of flat-panel displays based on organic light-emitting devices”, IEEE Journal of Selected Topics in Quantum Electronics, 4, 83 (January/February, 1998).
22.Y. Fukuda, T. Watanabe, T. Wakimoto, S. Miyaguchi, and M. Tsuchida, “An organic LED display exhibiting pure RGB colors”, Synthetic Metals, 111-112, 1 (June, 2000).
23.A. Sempel, and M. Buchel, “Design aspects of low power polymer/OLED passive-matrix displays”, Organic Electronics, 3, 89 (June, 2002).
24.S. W. Kim, B. H. Hwang, J. H. Lee, J. I. Kang, K. W. Min, and W. Y. Kim, “2.4-in. monochrome small molecular OLED display for mobile application”, Current Applied Physics, 2, 335 (August, 2002).
25.S. R. Forrest, P. E. Burrows, Z. Shen, G. Gu, V. Bulovic, and M. E. Thompson, “The stacked OLED (SOLED): a new type of organic device for achieving high-resolution full-color displays”, Synthetic Metals, 91, 9 (December, 1997).
26.H. Kanno, Y. Hamada, and H. Takahashi, “Development of OLED with high stability and luminance efficiency by co-doping methods for full color displays”, IEEE Journal of Selected Topics in Quantum Electronics, 10, 30 (January/February, 2004).
27.M. B. Khalifa, D. Vaufrey, and J. Tardy, “Opposing influence of hole blocking layer and a doped transport layer on the performance of heterostructure OLEDs”, Organic Electronics, 5, 187 (June, 2004).
28.P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, and M. E. Thompson, “Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices”, J. Appl. Phys., 79, 7991 (May, 1996).
29.J. Dresner, “Double injection electroluminescence in Anthracene”, RCA Rev., 30, 322 (June, 1969).
30.W. Helfrich, and W. G. Schneider, “Transients of Volume-Controlled Current and of Recombination Radiation in Anthracene”, J. Chem. Phys., 44, 2902 (April, 1966).
31.W. Helfrich, and F. R. Lipsett, “Fluorescence and Defect Fluorescence of Anthracene at 4.2 K”, J. Chem. Phys., 43, 4368 (December, 1965).
32.D. F. Williams, and M. Schadt, “A simple organic electroluminescent diode”, Proc. IEEE, 58, 476 (March, 1970).
33.C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films”, J. Appl. Phys., 65, 3610 (May, 1989).
34.L. J. Rothberg, and A. J. Lovinger, “Status of and prospects for organic electroluminescence”, Journal of Materials Research, 11, 3174 (December, 1996).
35.D. Z. Garbuzov, S. R. Forrest, A. G. Tsekoun, P. E. Burrows, V. Bulovic, and M. E. Thompson, “Organic films deposited on Si p-n junctions: Accurate measurements of fluorescence internal efficiency, and application to luminescent antireflection coatings”, J. Appl. Phys., 80, 4644 (October, 1996).
36.B. E. A. Saleh, and M. C. Teich, “Fundamentals of photonics”, John Wiley and Sons, New York, page 603 (1991).
37.M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices”, Nature, 395, 151 (September, 1998).
38.M. A. Baldo, D. F. O’Brien, M. E. Thompson, and S. R. Forrest, “Excitonic singlet-triplet ratio in a semiconducting organic thin film”, Physical Review B, 60, 14 422 (November, 1999).
39.G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “High-external-quantum-efficiency organic light-emitting devices”, Optics Letters, 22, 396 (March, 1997).
40.J. R. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman, and A. Stocking, “Organic Electroluminescent Devices”, Science, 273, 884 (August, 1996).
41.G. Gu, V. Bulovic, P. E. Burrows, S. R. Forrest, and M. E. Thompson, “Transparent organic light emitting devices”, Appl. Phys. Lett., 68, 2606 (May, 1996).
42.V. Bulovic, G. Gu, P. E. Burrows, S. R. Forrest, and M. E. Thompson, “Transparent light-emitting devices”, Nature, 380, 29 (March, 1996).
43.G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “Vacuum-deposited, nonpolymeric flexible organic light-emitting devices”, Optics Letters, 22, 172 (March, 1997).
44.C. Py, D. Roth, I. Levesque, J. Stapledon, A. Donat-Bouillud, “An integrated shadow-mask based on a stack of inorganic insulators for high-resolution OLEDs using evaporated or spun-on materials”, Synthetic Metals, 122, 225 (May, 2001).
45.C. Py, M. D’Iorio, Y. Tao, J. Stapledon, and P. Marshall, “A passive matrix addressed organic electroluminescent display using a stack of insulators as row separators”, Synthetic Metals, 113, 155 (June, 2000).
46.T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, “Ink-jet printing of doped polymers for organic light emitting devices”, Appl. Phys. Lett., 72, 519 (February, 1998).
47.J. Bharathan, and Y. Yang, “Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo”, Appl. Phys. Lett., 72, 2660 (May, 1998).
48.T. R. Hebner, and J. C. Sturm, “Local tuning of organic light-emitting diode color by dye droplet application”, Appl. Phys. Lett., 73, 1775 (September, 1998).
49.Y. Y. Park, H. Cho, Y. M. Son, J. Y. Park, L. Pu, S. K. Yoon, Y. S. Hong, and H. K. Lee, “Simultaneous UV embossing method for fabricating two parallel organic layers with different hydrophilicity”, Microelectronic Engineering, 82, 1 (September, 2005).
50.R. H. Jordan, A. Dodabalapur, M. Strukelj, and T. M. Miller, “White organic electroluminescence devices”, Appl. Phys. Lett., 68, 1192 (February, 1996).
51.S. Tokito, T. Lijima, T. Tsuzuki, and F. Sato, “High-efficiency white phosphorescent organic light-emitting devices with greenish-blue and red-emitting layers”, Appl. Phys. Lett., 83, 2459 (September, 2003).
52.B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, and M. F. Rubner, “Electroluminescence from CdSe quantum-dot/polymer composites”, Appl. Phys. Lett., 66, 1316 (March, 1995).
53.V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer”, Nature, 370, 354 (August, 1994).
54.Y. Yang, and Q. Pei, “Voltage controlled two color light-emitting electrochemical cells”, Appl. Phys. Lett., 68, 2708 (May, 1996).
55.J. Kalinowski, P. Di Marco, M. Cocchi, V. Fattori, N. Camaioni, and J. Duff, “Voltage-tunable-color multilayer organic light emitting diode”, Appl. Phys. Lett., 68, 2317 (April, 1996).
56.T. Mori, K. Obata, K. Imaizumi, and T. Mizutani, “Preparation and properties of an organic light emitting diode with two emission colors dependent on the voltage polarity”, Appl. Phys. Lett., 69, 3309 (November, 1996).
57.M. Yoshida, A. Fujii, Y. Ohmori, and K. Yoshino, “Polarity-Dependent Multicolor Organic Electroluminescent Device”, Jpn. J. Appl. Phys. Part 2, 35, L397 (March, 1996).
58.M. Hamaguchi, A. Fujii, Y. Ohmori, and K. Yoshino, “Voltage- and Polarity-Tunable Multicolor Organic Electroluminescent Devices”, Jpn. J. Appl. Phys. Part 2, 35, L1462 (November, 1996).
59.L. S. Hung, and C. W. Tang, “Interface engineering in preparation of organic surface-emitting diodes”, Appl. Phys. Lett., 74, 3209 (May, 1999).
60.G. E. Jabbour, B. Kippelen, N. R. Armstrong, and N. Peyghambarian, “Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices”, Appl. Phys. Lett., 73, 1185 (August, 1998).
61.Q. T. Le, L. Yan, Y. Gao, M. G. Mason, D. J. Giesen, and C. W. Tang, “Photoemission study of aluminum/tris-(8-hydroxyquinoline) aluminum and aluminum/LiF/tris-(8-hydroxyquinoline) aluminum interfaces”, J. Appl. Phys., 87, 375 (January, 2000).
62.P. Piromreun, H. Oh, Y. Shen, G. G. Malliaras, J. C. Scott, and P. J. Brock, “Role of CsF on electron injection into a conjugated polymer”, Appl. Phys. Lett., 77, 2403 (October, 2000).
63.L. S. Hung, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode”, Appl. Phys. Lett., 70, 152 (January, 1997).
64.J. Lee, Y. Park, D. Y. Kim, H. Y. Chu, H. Lee, and L. -M. Do, “High efficiency organic light-emitting devices with Al/NaF cathode”, Appl. Phys. Lett., 82, 173 (January, 2003).
65.S. A. VanSlyke, C. H. Chen and C. W. Tang, “Organic electroluminescent devices with improved stability” Appl. Phys. Lett., 69, 2160 (October, 1996).
66.Y. Shirota et al., “Multilayered organic electroluminescent device using a novel starburst molecule, 4,4’,4”-tris(3-methyl-phenylphenylamino)triphenylamine, as a hole transport material” Appl. Phys. Lett., 65, 807 (August 1994).
67.S. Krag J. C. Scott, J. R. Salem, and M. Angelopoulos., “Increased brightness and lifetime of polymer light-emitting diodes with polyaniline anodes” Synth. Met., 80, 111 (June, 1996).
68.H. Jiang, Y. Zhou, B. S. Ooi, Y. Chen, T. Wee, Y. L. Lam, J. Huang, and S. Liu, “Improvement of organic light-emitting diodes performance by the insertion of a Si3N4 layer”, Thin Solid Films, 363, 25 (March, 2000).
69.Z. B. Deng, X. M. Ding, S. T. Lee, and W. A. Gambling, “Enhanced brightness and efficiency in organic electroluminescent devices using SiO2 buffer layers”, Appl. Phys. Lett., 74, 2227 (April, 1999).
70.W. Rieß, H. Riel, P. F. Seidler, and H. Vestweber, “Organic-inorganic multiplayer structure: a novel route to highly efficient organic light-emitting diodes”, Synth. Met., 99, 213 (February, 1999).
71.Y. Kurosaka, N. Tada, Y. Ohmori, and K. Yoshino, “Improvement of Electrode/Organic Layer Interfaces by the Insertion of Monolayer-like Aluminum Oxide Film” Jpn. J. Appl. Phys., 37, L872 (July, 1998).
72.Huei-Tzong Lu and Meiso Yokoyama, “Plasma preparation on indium tin oxide anode surface for organic light-emitting diodes” J. Crystal Growth, 260, 186 (January, 2004).
73.H. Razafitrimo, E. Ettedgui, L. H. Guo, G. L. McLendon, and Y. Gao, “X-ray photoemission study of the interface formation between calcium and self-assembled alkanethiol monolayers”, Appl. Phys. Lett., 67, 2621 (October, 1995).
74.E. Ettedgui, H. Razafitrimo, Y. Gao, and B. R. Hsieh, “Band bending modified tunneling at metal/conjugated polymer interfaces”, Appl. Phys. Lett., 67, 2705 (October, 1995).
75.T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada, and M. Tsuchida, “Organic EL cells using alkaline metal compounds as electron injection materials”, IEEE Transactions on Electron Devices, 44, 1245 (August, 1997).
76.G. Parthasarathy, P. E. Burrows, V. Khalfin, V. G. Kozlov, and S. R. Forrest, “A metal-free cathode for organic semiconductor devices”, Appl. Phys. Lett., 72, 2138 (April, 1998).
77.Y. Sato, T. Ogata, and Y. Murata, in: 9th Intl. Workshop on Inorganic and Organic Electroluminescence, Bend, OR, Sept., 1998, pp. 9–12, Extended Abstracts.
78.Z. Zhilin, J. Xueyin, and X. Shaohong, “Energy transfer and white emitting organic thin film electroluminescence”, Thin Solid Films, 363, 61 (March, 2000).
79.D. Qin and Y. Tao, “Increased electrophosphorescent efficiency in organic light emitting diodes by using an exciton-collecting structure”, J. Appl. Phys., 97, 044505 (February, 2005).
80.M. S. Weaver, V. Adamovich, R. C. Kwong, M. Hack, and J. J. Brown, “Realizing the potential for phosphorescent OLED technology”, Proceedings of 2005 International Display Manufacturing Conference & Exhibition, pp.207~210 (February, 21-24, 2005).
81.X. M. Ding, L. M. Hung, L. F. Cheng, Z. B. Deng, X. Y. Hou, C. S. Lee, and S. T. Lee, “Modification of the hole injection barrier in organic light-emitting devices studied by ultraviolet photoelectron spectroscopy”, Appl. Phys. Lett., 76, 2704 (May, 2000).
82.I. D. Parker and H. H. Kim, “Fabrication of polymer light-emitting diodes using doped silicon electrodes”, Appl. Phys. Lett., 64, 1774 (April, 1994).
83.K. Itano, H. Ogawa, and Y. Shirota, “Exciplex formation at the organic solid-state interface: Yellow emission in organic light-emitting diodes using green-fluorescent tris(8-quinolinolato)aluminum and hole-transporting molecular materials with low ionization potentials”, Appl. Phys. Lett., 72, 636 (February, 1998).
84.D. D. Gebler, Y. Z. Wang, J. W. Blatchford, S. W. Jessen, D. -K. Fu, T. M. Swager, A. G. MacDiarmid, and A. J. Epstein, “Exciplex emission in bilayer polymer light-emitting devices”, Appl. Phys. Lett., 70, 1644 (March, 1997).
85.Ching-Ian Chao and Show-An Chen, “White light emission from exciplex in a bilayer device with two blue light-emitting polymers”, Appl. Phys. Lett., 73, 426 (July, 1998).
86.J. Feng, F. Li, W. Gao, S. Liu, Y. Liu, and Y. Wang, “White light emission from exciplex using tris-(8-hydroxyquinoline)aluminum as chromaticity-tuning layer”, Appl. Phys. Lett., 78, 3947 (June, 2001).
87.Yasunori Kijuma, Nobutoshi Asai, and Shin-ichiro Tamura, “A Blue Organic Light Emitting Diode”, Jpn. J. Appl. Phys., 38, 5274 (September, 1999).
88.Y. Sato, S. Ichinosawa, T. Ogata, M. Fugono and Y. Murata, “Blue-emitting organic EL devices with a hole blocking layer”, Synth. Met., 111-112, 25 (June, 2000).
89.Y. Sakakibara, S. Okutsu, T. Enokida, and T. Tani, “Red organic electroluminescence devices with a reduced porphyrin compound, tetraphenylchlorin”, Appl. Phys. Lett., 74, 2587 (May, 1999).
90.R. C. Kwong, S. Sibley, T. Dubovoy, M. Baldo, S. R. Forrest, and M. E. Thompson, “Efficient, Saturated Red Organic Light Emitting Devices Based on Phosphorescent Platinum(II) Porphyrins”, Chemistry of Materials, 11, 3709 (December, 1999).
91.X. Jiang, Alex K.-I. Jen, B. Carlson, and L. R. Dalton, “Red electrophosphorescence from osmium complexes”, Appl. Phys. Lett., 80, 713 (February, 2002).
92.K. H. Choi, D. H. Hwang, H. M. Lee, L. M. Do, and T. Zyung, “Electroluminescent behaviours of polymer/organic heterostructure devices”, Synth. Met., 96, 123 (July, 1998).
93.W. Hu, M. Matsumura, M. Wang, and L. Jin, “Efficient red electroluminescence from devices having multilayers of a europium complex”, Appl. Phys. Lett., 77, 4271 (December, 2000).
94.D. M. Shin, S. Noh, B. C. Shon, J. H. Kim, C. Kim, and B. N. Kim, “Hole-blocking characteristics of 2,4,6-triphenyl-1,3,5-triazine as a non-transporting filler material”, Thin Solid Films, 363, 252 (March, 2000).
95.Z. Y. Xie, T. C. Wong, L. S. Hung, and S. T. Lee, “Transient electroluminescence of organic quantum-well light-emitting diodes”, Appl. Phys. Lett., 80, 1477 (February, 2002).
96.H. Ochi, S. Kawami, H. Ohata, K. Nagayama, R. Murayama, Y. Okuda, H. Nakada, T. Tohma, T. Naito, and H. Abiko, J. SID, 5 (3), 235 (1997).
97.S. Miyaguchi, S. Ishizuka, T. Wakimoto, J. Funaki, Y. Fukuda, H. Kubota, K. Yoshida, T. Watanabe, H. Ochi, T. Sakamoto, M. Tsuchida, I. Ohshita, and T. Tohma, 9th Intl. Workshop on Inorganic and Organic Electroluminescence (EL’98), 137 (1998).
98.C. Hosokawa, M. Eida, M. Matsuura, K. Fukuoka, H. Nakamura, and T. Kusumoto, “Organic multi-color electroluminescence display with fine pixels”, Synthetic Metals, 91, 3 (December, 1997).
99.Z. Shen, P. E. Burrows, V. Bulovic, S. R. Forrest, and M. E. Thompson, “Three-Color, Tunable, Organic Light-Emitting Devices”, Science, 276, 2009 (June, 1997).
100.Y. Sato, T. Ogata, and Y. Murata, 9th Intl. Workshop on Inorganic and Organic Electroluminescence (EL’98), 9 (1998).
101.H. Tokailin, M. Matsuura, H. Higashi, C. Hosokawa, and T. Kusumoto, Proc. SPIE, 39 1910 (1993).
102.Y. Hamada, C. Adachi, T. Tsutsui, and S. Saito, “Blue-Light-Emitting Organic Electroluminescent Devices with Oxadiazole Dimer Dyes as an Emitter”, Jpn. J. Appl. Phys. Part 1, 31, 1812 (June, 1992).
103.P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices”, Appl. Phys. Lett., 64, 2922 (December, 1994).
104.H. Kubota, S. Miyaguchi, S. Ishizuka, T. Wakimoto, J. Funaki, Y. Fukuda, T. Watanabe, H. Ochi, T. Sakamoto, T. Miyake, M. Tsuchida, I. Ohshita, and T. Tohma, “Organic LED full color passive-matrix display”, Journal of Luminescence, 87-89 56 (May, 2000).
105.S. H. Kwon, S. Y. Paik, and J. S. Yoo, “Electroluminescent properties of MEH–PPV light-emitting diodes fabricated on the flexible substrate”, Synthetic Metals, 130, 55 (August, 2002).
106.G. H. Kim, J. Oh, Y. S. Yang, L. M. Do, K. S. Suh, “Encapsulation of organic light-emitting devices by means of photopolymerized polyacrylate films”, Polymer, 45 1879 (March 2004).
107.S. Han, L. Wang, G. Lei, and Y. Qiu, “A Study on the Performances of White Organic Light-Emitting Diodes and the Morphologies of Their Hole-Blocking Layers” Jpn. J. Appl. Phys., 44, L182 (Januuary, 2005).
108.G. Cheng, Y. Zhao, F. Li, W. Xie, and S. Liu, “Effect of a thin layer of AlQ3 doped with NPB on the chromaticity of white organic light-emitting devices”, Thin Solid Films, 467, 231 (2004).
109.W. S. Bacsa, M. Schaer, and L. Zuppiroli, “Blue organic light emitting diodes based on bicarbazyle derivates: Device stability and multilayer configuration”, J. Appl. Phys., 84, 5733 (November, 1998).
110.Z. Liu and Helena Nazare, “White organic light-emitting diodes emitting from both hole and electron transport layers”, Synth. Met., 111-112, 47 (2000).
111.D. Y. Jeong, Y. H. Ye, and Q. M. Zhang, “Electrical tunable Fabry–Perot interferometer using a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer”, Appl. Phys. Lett., 85, 4857 (November, 2004).
112.S. Han, C. Huang, and Z. H. Lu, “Color tunable metal-cavity organic light-emitting diodes with fullerene layer”, J. Appl. Phys., 97, 093102 (May, 2005).
113.F. Jean, J. Y. Mulot, B. Geffroy, C. Denis, and P. Cambon, “Microcavity organic light-emitting diodes on silicon”, Appl. Phys. Lett., 81, 1717 (August, 2002).
114.J. Kido, T. Matsumoto, T. Nakada, J. Endo, K. Mori, N. Kawamura, and A. Yokoi, “High Efficiency Organic EL Devices having Charge Generation Layers”, SID Digest, 964 (2003).
115.T. Matsumoto, T. Nakada, J. Endo, K. Mori, N. Kawamura, A. Yokoi, and J. Kido, “Multiphoton Organic EL device having Charge Generation Layer”, SID Digest, 979 (2003).