簡易檢索 / 詳目顯示

研究生: 陳志源
Chen, Chih-Yuan
論文名稱: 有機金屬化學氣相沉積氧化鎵磊晶膜特性及其光電元件之研究
Study on MOCVD grown Gallium Oxide film for Optoelectronic Device Applications
指導教授: 洪瑞華
Horng, Ray-Hua
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 67
中文關鍵詞: 氧化鎵有機金屬化學氣相沉積MSM光偵測器
外文關鍵詞: Ga2O3, MOCVD, MSM photodetector
相關次數: 點閱:94下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究以有機金屬化學氣相沉積法進行氧化鎵磊晶膜的成長,成長在(0001)藍寶石基板上。以不同的成長條件來探討對氧化鎵薄膜品質的影響,藉由調變腔體溫度、磊晶時腔壓、參與反應的氧氣流量來研究對磊晶膜品質的影響,試著選擇出較佳的成長參數。分析後發現最佳化參數為腔壓15 Torr、氧氣流量200 sccm,製程溫度500℃,接著將之製作成光電元件,並對元件作電特性分析與探討。
    經由XRD & PL薄膜分析發現製備完成的磊晶膜為單斜氧化鎵薄膜,最強波峰位於(4 0 2 )面,穿透率在260 nm~1000 nm平均約為92 %。能隙約為4.8 eV,進一步以沉積後金屬退火方式來分析薄膜特性,分別以大氣下退火、O2 環境下退火、N2環境下退火、與不進行退火,使用光子激發光光譜法(PL)和高解析度X-射線繞射儀做分析發現,氮氣退火後我們發現氮氣退火確實對薄膜品質有提升的效果。
    製備完成氧化鎵薄膜後,我們接著製作成金半金光檢測器,以光響應頻譜分析發現氮氣退火後的薄膜製成光偵器,對於漏電流有改善現象,由退火前的1.6×10-12下降至退火後的1.2×10-13,降幅達1個數量級。光響應度的部分也有所提升。退火前最大響應度為0.0325A/W,氮氣退火後最大響應度為0.4375A/W,可以說明氮氣退火對於改善元件電特性是有效的。
    經由量測結果發現,元件在短波光的波段有不錯的操作特性,證明可以應用做為UV光偵測器。

    This thesis focuses on growth of gallium oxide epitaxial film used metal organic chemical vapor deposition technology. Deposited on c-plane (0001) sapphire.I use a different growth conditions to discuss the impact on the quality of gallium oxide films. Changing the deposition temperature、chamber pressure, and oxygen flow to study the influence of the epitaxial film quality,try to choose a better growth parameters.After analysis, the optimized parameters: chamber pressure 15Torr、Oxygen flow 200 standard cubic centimeter per minute (sccm),Process temperature 500℃. Then a metal-semiconductor-metal solar-blind deep ultraviolet photodetector was fabricated on the β-Ga2O3 epilayer.
    The epilayer was grown on (0001) sapphire substrate using modified Emcore D180 MOCVD system.The metal organic source is TEGa, chemical reaction gas is oxygen. The as-grown β-Ga2O3 epilayer was annealed at 800 ºC in atmosphere or Oxygen or Nitrogen. Influence of surface states and point defects of β-Ga2O3 epilayers before and after N2 annealing are studied using room-temperature Photoluminescence (PL) and HR-XRD.We have shown that annealing single-crystalline β-Ga2O3 epilayer in Nitrogen atmosphere at 800 ºC can heal its surface states and point defects without disturbing crystal structure and quality.It also can improve the MSM photodetector performance of dark current and responsivity.

    中文摘要 i ABSTRACT ii 致謝 iii 表目錄 vi 圖目錄 vi 第一章、緒論 1 1.1 研究背景與動機 1 1.2 氧化鎵材料簡介 3 1.3 論文架構 5 第二章、實驗理論基礎 6 2.1 MOCVD介紹 6 2.2 金屬-半導體接面理論 7 2.3 蕭基特接面理論 7 2.4 光檢測器工作原理 9 2.5 氧空缺 10 第三章、實驗方法與量測儀器介紹 12 前言 12 3.1 以MOCVD 沉積氧化鎵磊晶膜 12 3.1-1進行磊晶膜沉積後退火 14 3.2 MSM光偵測器元件製作 15 3.3量測儀器介紹 17 3.3-1 X光繞射儀 17 3.3-2 原子力顯微鏡 17 3.3-3掃描式電子顯微鏡 20 3.3-4 PL 21 3.3-5 N&K光學量測系統 21 3.3-6 半導體量測系統 22 3.3-7 暗電流 & 光響應度量測 22 第四章 實驗結果與分析 23 4.1 沉積溫度對氧化鎵磊晶膜影響 23 4.2腔體壓力變化對氧化鎵磊晶膜影響 24 4.3氧氣流量變化對氧化鎵磊晶膜影響 25 4.4 沉積後退火對氧化鎵磊晶膜影響 26 4.5 氧化鎵光偵測器電特性分析 29 第五章 結論與未來展望 30 5.1 結論 30 5.2 未來展望 31 參考文獻 32 表目錄 表1 相同腔壓下不同成長溫度的磊晶膜厚 36 表2 相同溫度下不同腔體壓力的磊晶膜厚 37 表3 相同溫度、腔壓下不同氧氣流量的磊晶膜厚 38 圖目錄 圖1-2-1 三種氧化鎵結晶結構示意圖(A) α 相 (b) β 相 (c) γ 相 39 圖1-2-2 β相Ga2O3單斜晶(MONOCLINI)結構 39 圖1-2-3 β- Ga2O3 在導帶的狀態密度圖 40 圖2-1-1水平式磊晶成長之MOCVD系統示意圖 41 圖2-1-2 III族有機金屬之化學反應圖 41 圖2-1-3 成長Ga2O3 系統示意圖 42 圖2-1-4 成長Ga2O3系統示意圖 42 圖2-3-1金屬-N 型半導體接觸能帶圖 43 圖2-3-2蕭特基位障在順向偏壓下的四種基本載子傳導機制示意圖 44 圖2-4-1 MSM-PD 在不同偏壓(a)V=0無偏壓(b)V=VRT 觸及電壓(C)V=VFB平帶電壓時的能帶圖 45 圖2-4-2金屬-半導體-金屬光檢測器工作原理示意圖 46 圖3-1-1 指叉狀電極 47 圖3-2-1製作完成的氧化鎵光偵測器 47 圖3-3-1 (a) X光繞射系統示意圖 (b) X光繞射系統之光學模組構造 48 圖3-3-2 SEM主要構造示意圖 48 圖3-3-3各種訊號與解析度之示意圖 49 圖3-3-4 AFM作動原理示意圖 49 圖3-3-5 (a) N&K Analyzer工作原理 (b)N&K Analyzer量測光路與內部構造圖 50 圖3-3-6光激發螢光系統架構圖 50 圖3-3-7光響應度量測系統示意圖 51 圖4-1 JCPDS NO.43-1012 52 圖4-2調變沉積溫度XRD量測結果 53 圖4-3調變沉積溫度ω量測結果 53 圖4-4調變腔體壓力XRD量測結果 54 圖4-5調變腔體壓力ω量測結果 54 圖4-6調變腔體壓力PL量測結果 55 圖4-7調變氧氣流量XRD量測結果 56 圖4-8調變氧氣流量PL量測結果 56 圖4-9 TEGa50 sccm、O2 flow200 sccm、15 Torr、500℃薄膜的穿透率 57 圖4-10有無退火的磊晶膜的2θ量測結果 58 圖4-11有無退火的磊晶膜的ω量測結果 58 圖4-12有無退火的磊晶膜的PL量測結果 59 圖4-13不同氣體退火後的磊晶膜的2θ量測結果 60 圖4-14不同氣體退火後磊晶膜在(4 0 2 )XRD的量測結果 60 圖4-15不同氣體進行退火後薄膜的PL量測結果 61 圖4-16不同氣體進行退火後薄膜的CL量測結果 61 圖4-17 氧化鎵光偵測器元件完成示意圖 62 圖4-18氮氣退火的氧化鎵薄膜在不同溫度下的CL光譜 62 圖4-19不同氣體退火的低溫CL光譜 63 圖4-20氧化鎵光偵測器元件暗電流 64 圖4-21氮氣退火後光偵器的響應度 65 圖4-22氮氣退火後光偵器V-R 結果 65 圖4-23未進行退火的光偵器響應度圖譜 66 圖4-24未進行退火的光偵測器V-R結果……………………………66 圖4-25進行800℃氮氣退火的薄膜AFM結果 67 圖4-26未進行退火的薄膜AFM結果 67

    [1]E. Monroy, F. Omnes, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol., vol. 18, no. 4, pp. R33–R51, 2003.
    [2] M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys., vol. 79, pp. 7433–7473, 1996.
    [3] A. Hirano, C. Pernot, M. Iwaya, T. Detchprohm, H. Amano, and I. Akasaki, “Demonstration of flame detection in room light background by solar-blind AlGaN pin photodiode,” Phys. Stat. Sol. A, vol. 188, pp. 293–296, 2001.
    [4] D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, and M. Razeghi, “Solar-blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett.vol. 76, pp. 403-406, 2000.
    [5] T. Takagi, H. Tanaka, S. Fujita, and S. Fujita, “Molecular beam epitaxy of high magnesium content single-phase wurzite MgxZn1−xO alloys (x ∼ 0.5) and their application to solar-blind region photodetectors,” Jpn. J. Appl. Phys., vol. 42, no. 4B, pp. L401–L403, 2003.
    [6] M. Y. Liao, Y. Koide, and J. Alvarez, “Thermally-stable visible-blind diamond photodiode using WC Schottky contact,” Appl. Phys. Lett., vol. 87, pp. 022105-3, 2005.
    [7] R. Dahal, J. Li, Z. Y. Fan, M. L. Nakarmi, T. M. Al Tahtamouni, J. Y. Lin, H. X. Jiang, “AlN MSM and Schottky photodetectors,” Phys. Status Solidi c, vol. 5, pp. 2148-51, 2008.
    [8] A. Soltani, H.A. Barkad, M. Mattalah, B. Benbakhti, J.-C. De Jaeger, W.J. Zhang, Y.M. Chong, Y.S. Zou, S.T. Lee, A. BenMoussa, B. Giordanengo, and J.-F. Hochedez, “193 nm deep ultraviolet, visible-blind cBN photodiodes using a new IDTs design based on cubic boron nitride,” Appl. Phys. Lett., vol. 92, pp. 53-54, 2008.
    [9] Y. Li, T. Tokizono, M. Liao, M. Zhong, Y. Koide, and J. Delaunay, “Efficient assembly of bridged β-Ga2O3 nanowires for solar-blind photodetection, ” J. Adv. Funct. Mater., vol. 20, pp. 39-72, 2010.
    [10] T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Vertical solar-blind deep-ultraviolet Schottky photodetectors based on beta-Ga2O3 substrate,” Appl. Phys. Express, vol. 1,pp.5-8 2008.
    [11] L. K. Wang, Z. G. Ju, J. Y. Zhang, J. Zheng, D. Z. Shen, B. Yao, D. X., Zhao, Z. Z. Zhang, B. H. Li, and C. X. Shan, “Single-crystalline cubic MgZnO films and their application in deep-ultraviolet optoelectronic devices, ” Appl. Phys. Lett., vol. 95, pp. 131-137, 2009.
    [12] Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, “Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors,” Appl. Phys. Lett, vol. 90,pp.56-78, 2007.
    [13] Z. Yu, C. M. Overgaard, R. Droopad, M. Passlack, and J. K. Abrokwah, “Growth and physical properties of Ga2O3 thin films on GaAs (001) substrate by molecular-beam epitaxy,” Appl. Phys. Lett., vol. 82,18, pp. 2978–2980, 2003.
    [14] M. Orita, H. Hiramatsu, H. Ohta, M. Hirano, and H. Hosono, “Preparation of highly conductive, deep ultraviolet transparent β-Ga2O3 thin film at low deposition temperatures,” Thin Solid Films, vol. 411,1, pp. 134– 139, 2002.
    [15] C. L. Dezelah, J. Niinisto, K. Arstila, L. Niinisto, and C. H.Winter, “Atomic layer deposition of Ga2O3 films from a dialkylamido-based precursor,” Chem. Mater., vol. 18, pp. 471–475, 2006.
    [16] H. W. Kim and N. H. Kim, “Growth of gallium oxide thin films on silicon by the metal organic chemical vapor deposition method,” Mater. Sci. Eng. B, vol. 110, pp. 34–37, 2004.
    [17] K. Matsuzaki, H. Hiramatsu, K. Nomura, H.Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Growth, structure and carrier transport properties of Ga2O3 epitaxial film examined for transparent field-effect transistor,” Thin Solid Films, vol. 496, pp. 37–41, 2006.
    [18] Q. Chen, M.A. Khan, J.W. Yang, C.J. Sun, M.S. Shur, H. Park,Appl. Phys. Lett. pp.69,-79 ,1996.
    [19] T. Oshima, T. Okuno, S. Fujita, Jpn. J. Appl. Phys, pp.46, 7217,2007.
    [20] H. Hayashi, R. Huang, H. Ikeno, F. Oba, S. Yoshioka, I. Tanaka,S. Sonoda, Appl. Phys. Lett,pp .89, 181901 ,2006.
    [21] M.W. Hong, J.R. Kwo, P.C. Tsai, Y.C. Chang, M.L. Huang, C.P.Chen, T.D. Lin, Jpn. J. Appl. Phys,pp. 46-67 ,2007.
    [22] K. Chung, C.H. Lee, G.C. Yi, Science,pp. 330, 655 ,2010.
    [23] K. Shimamura, E.G. Villora, K. Domen, K. Yui, K. Aoki, N.Ichinose, Jpn. J. Appl. Phys,pp.44- 47 ,2005.
    [24] S. Ohira, N. Arai, Phys. Status Solidi,pp.5-7, 2008.
    [25] E.G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, N. Ichinose,J. Cryst. Growth,pp. 270-272 ,2004.
    [26] 高至鈞,汪建民,“材料分析”,中國材料科學學會, 台灣, 1998.
    [27] 陳立俊, 張立, 梁鉅銘, 林文台, 楊哲人, 鄭晃忠, “材料電子顯微鏡學”, 國家實驗研究院儀器科技研究中心, 台灣, 1990.
    [28] 黃冠凱,氮化鋁鎵/ 氮化鎵異質接面金屬-半導體-金屬光偵測器之製作與特性分析,中央大學光電所碩士論文,2003.
    [29] 張欣會,III族氮化物之金屬-半導體-金屬紫外光感測器之特性研究,中原大學電子工程研究所碩士論文,2008.
    [30] 何清華,摻氮氧化鎵奈米結構之光學特性研究,東華大學材料所博士論文,2010
    [31] Li-Wei Chang, Effect of the doped nitrogen on the optical properties of β-Ga2O3 nanowires. Materials Letters ,pp.2281–2283,2011.
    [32] L.L. Liu • M.K. Li • D.Q. Yu • J. Zhang • H. Zhang. Fabrication and characteristics of N-doped β-Ga2O3 nanowires. Appl Phys A ,pp. 831–835,2010.
    [33] Y. P. Song,H. Z. Zhang, Luminescence emission originating from nitrogen doping of b-Ga2O3 nanowires. PHYSICAL REVIEW B 69, pp.75-81 ,2004.
    [34] Ching-Hwa Ho, Nitrogen Doping Effect on Optical Property of Gallium Oxide Nanowires, ECS J. Solid State Sci. Technol, Volume 1, pp78-81,2012
    [35] 馬海林, 氧流量對熱蒸鍍CVD法成長β–Ga2O3奈米材料的結構
    及發光特性的影響, 蘭州大學物理科學與技術學院院刊,2010

    無法下載圖示 校內:2017-09-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE