簡易檢索 / 詳目顯示

研究生: 翁聖洋
Weng, Sheng-Yang
論文名稱: 具三種模式之可重組14位元2GS/s及12位元4GS/s數位類比轉換器
A 14-Bit 2GS/s and 12-Bit 4GS/s Reconfigurable DAC with Triple Modes
指導教授: 郭泰豪
Kuo, Tai-Haur
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 101
中文關鍵詞: 多模式應用超越奈奎氏頻帶雙模組動態元件匹配電流源式數位類比轉換器
外文關鍵詞: Multi-mode, Over-Nyquist band, Dual-mode DEM, Current-steering, DAC
相關次數: 點閱:135下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文實現一個具三種模式且可重組14位元2GS/s或12位元4GS/s電流源式數位類比轉換器。針對各種數位類比轉換器的應用,設計出三種模式,分別為超取樣模式,奈奎氏模式及超越奈奎氏頻帶模式。為實現可符合各種應用且具有最佳效能的數位類比轉換器,設計之數位類比轉換器提出許多技術以提升輸出表現。針對電流源式數位類比轉換器設計中電流源不匹配問題,採用最小切換動態元件匹配和資料權重平均法這兩種不同的動態元件匹配演算法,可配合不同的應用切換,以降低不匹配造成在各種模式中的諧波失真。在超取樣模式中,則以資料權重平均法提升在窄頻中的輸出表現。至於超越奈奎氏頻帶,則提出不同於現有技術的切換方式,使其應用於超越奈奎氏頻帶有極佳的輸出表現。不僅可使第三奈奎氏頻帶訊號衰減量低於10dB,且無雜訊動態範圍更可維持65dB以上的規格。整體效能更是優於現有發表成果。
    此電流源式數位類比轉換器之實現是採用TSMC 90奈米,1P9M互補金氧半導體製程,主動電路面積僅0.082平方毫米。量測結果顯示,此數位類比轉換器可達到在1.1GS/s下從低頻到0.55GHz的SFDR均大於60dB,且14-bit奈奎氏頻帶中的效能指數和世界頂尖的作品相比均為最佳。

    In this thesis, a triple-mode 14-bit 2GS/s or 12-bit 4GS/s reconfigurable current-steering digital-to-analog converter (DAC) is presented. For different DAC applications, triple mode is proposed, which means over-sampling mode, Nyquist mode, and over-Nyquist mode. The target of this work is that using a single DAC chip to fulfill all of the applications and with better performances than any state-of-the-art work. For this target, many techniques are proposed to improve the performances. In current-steering DAC design, current source mismatch is a main problem. Minimum switching dynamic element matching (MSDEM) and data weighted averaging (DWA) are adopted to process the harmonic distortion caused by mismatch. In addition, for over-sampling mode, DWA is used to improve the performance in narrow band. Moreover, for over-Nyquist mode, a novel method is proposed which makes the signal consumption < 10dB and spurious-free dynamic range (SFDR) > 65 dB up to 3rd Nyquist band.
    The current-steering DAC is fabricated in TSMC 90nm 1P9M CMOS technology with only 0.082mm2 of active area. The measurement results show that the DAC achieves >60dB SFDR from dc to 0.55GHz at 1.1GS/s and the 14-bit Nyquist band performance is the best in figure of merit (FOM) comparing to state-of-the-art works.

    摘要 I Abstract II Acknowledgements III Table of Contents IV List of Tables VI List of Figures VII Chapter 1 : Introduction 1 1.1 Motivation 1 1.2 Organization 5 Chapter 2 : Fundamental of Digital to Analog Converters (DACs) 6 2.1 Ideal DAC 7 2.2 Static Performances 8 2.3 Dynamic Performances 12 2.4 Sample-and-Hold Response 17 Chapter 3 : Techniques for Linearity Enhancement 20 3.1 Suppression of Mismatch Effect 21 3.1.1 Current Source Mismatch Effect 22 3.1.2 Noise Shaping Analysis of MSDEM and DWA 26 3.2 Reduction of Output Transition Nonlinearity 36 3.3 Compensation of Finite Output Impedance 44 3.4 Performance Improvement in Over-Nyquist Band 46 Chapter 4 : Circuit Design and Implementation 52 4.1 Circuit Design Details 52 4.1.1 Build-in Testing Circuits 53 4.1.2 Reconfigurable Circuits 56 4.1.3 Switch Driver 60 4.1.4 Current Cell Array 63 4.1.5 Clock Receiver and Buffer 68 4.1.6 Hysteresis Circuit Design and Consideration 71 4.2 Whole Chip Layout and consideration 72 4.3 Summary of Simulation Results 76 4.3.1 Simulation Results of Nyquist Mode 76 4.3.2 Simulation Results of Over-sampling Mode 80 4.3.3 Simulation Results of Over-Nyquist Mode 81 Chapter 5 : Performance Measurements 84 5.1 Measurement Setup 84 5.2 PCB Design Consideration 86 5.3 Nyquist Mode Measurement Result 88 5.4 Over-Nyquist Mode Measurement Result 91 Chapter 6 : Conclusion and Future Work 94 Reference 97

    [1] V. D. Bosch, M. Borremans, M. Steyaert, and W. Sansen, “A 10-bit 1-GSample/s Nyquist current-steering CMOS D/A converter,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 315–324, Mar. 2001.
    [2] J. Bastos, A. M. Marques, M. S. J. Steyaert, and W. Sansen, “A 12-bit intrinsic accuracy high-speed CMOS DAC,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1959–1969, Dec. 1998.
    [3] P. Palmers and M. S. J. Steyaert, “A 10-bit 1.6-GS/s 27-mW current-steering D/A converter with 550-MHz 54-dB SFDR bandwidth in 130-nm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 11, pp. 2870–2879, Nov. 2010.
    [4] C.-H. Lin, F. M. L. van der Goes, J. R. Westra, J. Mulder, Y. Lin, E. Arslan, E. Ayranci, X. Liu, and K. Bult, “A 12 bit 2.9 GS/s DAC with IM3 >60 dBc beyond 1 GHz in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3285–3293, Dec. 2009.
    [5] W.-H. Tseng, C.-W. Fan, and J.-T. Wu, “A 12-bit 1.25-GS/s DAC in 90nm CMOS with >70 dB SFDR up to 500 MHz,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2845–2856, Dec. 2011.
    [6] A. R. Bugeja and B.-S. Song, “A self-trimming 14-b 100-MS/s CMOS DAC,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1841–1852, Dec. 2000.
    [7] M. P. Tiilikainen, “A 14-bit 1.8-V 20-mW 1-mm2 CMOS DAC,” IEEE J. Solid-State Circuits, vol. 36, no. 7, pp. 1144–1147, Jul. 2001.
    [8] D.-L. Shen, Y.-C. Lai, and T.-C. Lee, “A 10-bit binary-weighted DAC with digital background LMS calibration,” Proc. IEEE Asian Solid-State Circuits Conf. (ASSCC), Nov. 2007, pp. 352–355.
    [9] J.-H. Chi, S.-H. Chu, and T.-H. Tsai, “A 1.8-V 12-bit 250 MS/s 25-mW self-calibrated DAC,” Proc. IEEE Eur. Solid-State Circuits Conf. (ESSCIRC), Sep. 2010, pp. 222–225.
    [10] D.-H. Lee, Y.-H. Lin, and T.-H. Kuo, “Nyquist-rate current-steering digital-to-analog converters with random multiple data-weighted averaging technique and QN rotated walk switching scheme,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 11, pp. 1264–1268, Nov. 2006.
    [11] K. L. Chan, J. Zhu, and I. Galton, “A 150 MS/s 14-bit segmented DEM DAC with greater than 83 dB of SFDR across the Nyquist band,” Proc. Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2007, pp. 200–201.
    [12] D.-H. Lee, T.-H. Kuo, and K.-L. Wen, “Low-cost 14-bit current-steering DAC with a randomized thermometer-coding method,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 2, pp. 137–141, Feb. 2009.
    [13] W.-T. Lin, and T.-H. Kuo, “A Compact Dynamic-Performance-Improved Current-Steering DAC With Random Rotation-Based Binary-Weighted Selection,” IEEE J. Solid-State Circuits, vol. 47, no. 2, pp. 444–453, Feb. 2012.
    [14] W.-T. Lin and T.-H. Kuo, “A 12b 1.6GS/s 40mW DAC with >70dB SFDR over Entire Nyquist Bandwidth,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2013, pp. 474–475.
    [15] A. R. Bugeja, and B.-S. Song, “A Self-Trimming 14-b 100-MS/s CMOS DAC,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1841–1852, Dec. 2000.
    [16] Q. Huang, A. Francese, C. Martelli, and J. Nielsen, “A 200MS/s 14b 97mW DAC in 0.18μm CMOS,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2004, pp. 364–532.
    [17] AD9772: 14-Bit 150 MSPS TxDAC with 2x Interpolation Filter. Analog Device Inc., 1999.
    [18] US Patent 6,720,898
    [19] M. J. M. Pelgrom, C. J. Duinmaijer, and A. P. G. Welbers, “Matching Properties of MOS Transistors,” IEEE J. Solid-State Circuits, vol. 24, no. 5, pp. 1433–1440, Oct. 1989.
    [20] I. Galton, “Why Dynamic-Element-Matching DACs Work,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 2, pp. 69–74, Feb. 2010.
    [21] M.-J. Choe, K.-H. Baek, and M. Teshome, “A 1.6-GS/s 12-bit Return-to-Zero GaAs RF DAC for Multiple Nyquist Operation,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2456–2468, Dec. 2005.
    [22] A. Van den Bosch, M. S. J. Steyaert, and W. Sansen, “Solving static and dynamic performance limitations for high-speed D/A converters,” Analog Circuit Design: Scalable Analog Circuit Design, High-Speed D/A Converters, RF Power Amplifiers. Norwell, MA: Kluwer, 2002, pp. 189–210.
    [23] T. Chen, P. Geens, G. van der Plas, W. Dehaene, and G. Gielen, “A 14-bit 130-MHz CMOS current-steering DAC with adjustable INL,” Proc. IEEE Eur. Solid-State Circuits Conf. (ESSCIRC), Sep. 2004, pp. 167–170.
    [24] M. Clara, W. Klatzer, B. Seger, A. D. Giandomenico, and L. Gori, “A 1.5 V 200MS/s 13 b 25 mWDAC with randomized nested background calibration in 0.13 mCMOS,” IEEE Solid-State Circuits Conf.Dig. Tech. Papers, 2007, pp. 250–251.
    [25] G. A. M. Van der Plas, J. Vandenbussche, W. Sansen, M. S. J. Steyaert and G. G. E. Gielen, “A 14-bit intrinsic accuracy Q2 random walk CMOS DAC,” IEEE J. Solid-State Circuits, vol. 34, no.12, pp. 1708-1718, Dec. 1999.
    [26] D. H. Lee, Y. H. Lin, and T. H. Kuo, “Nyquist-rate current steering digital-to-analog converters with random multiple data-weighted average technique and QN rotated walk switching scheme,” IEEE Trans. Circuit Syst. II, vol. 53, no. 11, pp. 1264-1268, Nov. 2006.
    [27] Tao Chen and Georges G. E. Gielen, “The Analysis and Improvement of a Current-Steering DACs Dynamic SFDR—I: The Cell-Dependent Delay Differences,” IEEE Trans Circuit Syst.—I: REGULAR PAPERS, vol. 53, no. 1, pp. 3-15, JANUARY 2006
    [28] Fu-Sheng Hsu and Tai-Haur Kuo, “A 14-bit 200 MHz DAC with Minimum Current Switching and Dynamic Element Matching for Oversampling and Nyquist Dual-Mode,” Master Thesis, 2010
    [29] Wei-Cheng Hung and Tai-Haur Kuo, “A 12-bit 2GS/s Current-Steering DAC in 0.07 mm2,” Master Thesis, 2013
    [30] Nicola Ghittori, Andrea Vigna, Piero Malcovati, Stefano D’Amico, and Andrea Baschirotto, “1.2-V Low-Power Multi-Mode DAC+Filter Blocks for Reconfigurable (WLAN/UMTS, WLAN/Bluetooth) Transmitters,” IEEE J. Solid-State Circuits, vol. 41, no. 9, pp. 1970-1982, Sep. 2006
    [31] Gil Engel, Shawn Kuo, Steve Rose, “A 14b 3/6GHz Current-Steering RF DAC in 0.18μm CMOS with 66dB ACLR at 2.9GHz,” IEEE ISSCC Tech. Papers, pp. 458–461, Feb. 2012
    [32] Frank Van de Sande, Nico Lugil, Filip Demarsin, Zeger Hendrix, Alvin Andries, Peter Brandt, William Anklam, Jeffery S. Patterson, Brian Miller, Michael Rytting, Mike Whaley, Bob Jewett, Jacky Liu, Jake Wegman, and Ken Poulton, “A 7.2 GSa/s, 14 Bit or 12 GSa/s, 12 Bit Signal Generator on a Chip in a 165 GHz Ft BiCMOS Process,” IEEE J. Solid-State Circuits, vol. 47 , no. 4, pp. 1003-1012, April 2012
    [33] Stanley Yuan-Shih Chen, Nam-Seog Kim, and Jan Rabaey, “A 10b 600MS/s Multi-mode CMOS DAC for Multiple Nyquist Zone Operation,” IEEE VLSIC, 2011
    [34] Alex R. Bugeja, Bang-Sup Song, Patrick L. Rakers, and Steven F. Gillig, “A 14-b, 100-MS/s CMOS DAC Designed for Spectral Performance,” IEEE J. Solid-State Circuits, vol. 34 , no. 12, pp. 1719-1732, Dec. 1999
    [35] Yongjian Tang, Joost Briaire, Kostas Doris, Robert van Veldhoven, Pieter C. W. van Beek,Hans Johannes A. Hegt, and Arthur H. M. van Roermund, “A 14 bit 200 MS/s DAC With SFDR >78 dBc, IM3 <-83 dBc and NSD < -163 dBm/Hz Across the Whole Nyquist Band Enabled by Dynamic-Mismatch Mapping, ” IEEE J. Solid-State Circuits, vol. 46, no. 6, pp. 1371-1381, June 2011
    [36] Andrew C. Y. Lin, David K. Su, Richard K. Hester, and Bruce A. Wooley, “A CMOS Oversampled DAC With Multi-Bit Semi-Digital Filtering and Boosted Subcarrier SNR for ADSL Central Office Modems,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 868-875, April 2006
    [37] Dongwon Seo, and Gene H. McAllister, “A Low-Spurious Low-Power 12-bit 160-MS/s DAC in 90-nm CMOS for Baseband Wireless Transmitter,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 486-495, March 2007
    [38] Kyehyung Lee, Qingdong Meng, Tetsuro Sugimoto, Koichi Hamashita, Kaoru Takasuka, Seiji Takeuchi, and Un-Ku Moon, “A 0.8 V, 2.6 mW, 88 dB Dual-Channel Audio Delta-Sigma D/A Converter With Headphone Driver,” IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 916-927, March 2009
    [39] Bert Oyama, Daniel Ching, Khanh Thai, Augusto Gutierrez-Aitken, and Vipul J. Patel, “InP HBT/Si CMOS-Based 13-b 1.33-Gsps Digital-to-Analog Converter With >70-dB SFDR,” IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2265-2272, Oct. 2013
    [40] Brian Brandt, Dan McMahill, Miaochen Wu1, Paul Kalthoff, Ajay Kuckreja, and Geir Ostrem,“A 14b 4.6GS/s RF DAC in 0.18μm CMOS for Cable Head-End Systems,” IEEE ISSCC, pp. 390-392, Feb. 2014

    下載圖示 校內:2017-08-07公開
    校外:2017-08-07公開
    QR CODE