| 研究生: |
莊雅鈞 Chuang, Ya-Chun |
|---|---|
| 論文名稱: |
應用微流體阻抗量測晶片偵測糖化血色素之研究 Affinity Biosensor of HbA1c Integrated with Microfluidic Device Based on Impedance Measurement |
| 指導教授: |
張凌昇
Jang, Ling-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 阻抗量測 、糖化血色素 、自組性單分子層 、硼酸親合力 、微流體 |
| 外文關鍵詞: | Impedance measurement, Glycated hemoglobin, Capacitor biosensor, Boronic affinity |
| 相關次數: | 點閱:106 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著糖尿病患者人口日益攀升,糖尿病的控制與預防遂成為一個急需關注的議題。研究證實,糖化血色素濃度,可有效預防或延緩糖尿病併發症的產生,不像血糖值測定會受到運動、飲食等因素的影響,而有相當大的起伏變化。目前量測技術仍受到檢測儀器成本高、操作複雜、不易攜帶等的限制。因此近年來國內外研究,漸漸地進而轉往生物感測器方面去研究。本篇研究主要建立一個結合微流道的糖化血色素電阻抗感測器,使用平板式電極,其作用面積大,電場分布均勻,分析上更為直觀簡單,目的是透過電訊號直接量測電極間的電容變化,得到糖化血色素濃度與阻抗變化的關係。其主要可分為兩部分:以自組性單分子層達到蛋白質固定和阻抗量測。此種電阻抗感測器不須對蛋白質加以標記,也不需要加入試劑,有低成本、設備小、簡單快速以及可攜式的優點。
電性分析時,電極上固定糖化血色素使用短鏈的硫吩硼酸與糖類之間二醇亞硼酸來選擇,為達糖化血色素分析靈敏度,自組性單分子層能夠越薄越好。自組性單分子的浸泡時間對修飾情形的影響,並且利用螢光技術探討在不同酸鹼值和溫度條件下,糖化血色素與硼酸分子間的交互作用。由於蛋白質層固定於電極上之多寡會影響電場通過之情況,故使用等效電路之元件值評估特性,達成電性分析可以偵測濃度之目的。在阻抗量測部分,首先量測不同磷酸緩衝溶液與不同比例之去離子水混合溶液,成功分辨其不同濃度及其對應的等效電路元件值,證明此感測器的可行性。最後,先後通入純磷酸緩衝溶液與糖化血色素溶液,當生物分子吸附在電極表面時會造成阻抗變化,藉由附著前與附著後的比較,成功檢測濃度區間為10~100 ng/μL之糖化血色素,並證明只需使用量測電極與阻抗量測儀即可藉由電容性變化偵測生物分子的可行性。
A long-term marker of glycolic control in diabetes has made glycated hemoglobin (HbA1c) one of the most important diagnostic assays. This study presents a sensor for HbA1c detection based on impedance measurement. In the measurement process, no additional reagent is required. It is label-free, simple, low cost and low sample volume needed. The impedance biosensor is integrated with a microfluidic device by fabricating a very thin polydimethyl-siloxane (PDMS) layer sandwiched between the substrates. A pair of parallel facing electrodes is fabricated to characterize the impedance change and determine the concentration of HbA1c. Self-assembled monolayer (SAM) of thiophene-3-boronic acid (T3BA) is used for modification on the gold electrodes. When HbA1c interacts with boronic acid portion of SAM, a relatively small change in the electrical property of the surface can be resulted from the presence of HbA1c. In the non-faraidic detection with no redox indicator added, the surface-bound HbA1c is detected by utilizing the capacitive property as a sensing signal. It can be seen that HbA1c with concentrations in the range from 10 to 100 ng/μL produces an approximately logarithmic decrease in the amplitude of impedance. The proposed method for the detection of HbA1c has potential for point-of-care diagnostics and can be widely used for various biomolecules.
[1] H. B. Chandalia and P. R. Krishnaswamy, “Glycated hemoglobin.” Current science, Vol. 83, No. 12, 2002.
[2] H. F. Bunn, D. N. Haney, K. H. Gabbay and P. M. Gallop. “Further identification of the nature and linkage of the carbohydrate in hemoglobin A1c.” Biochemical and Biophysical Research Communications, Vol. 67, Issue 1, pp. 103-109, 1975.
[3] T. Tanakaa, K. Izawaa, M. Okochia, and T. K. Limb, S. Watanabeb, M. Haradab, and T. Matsunagaa, “On-chip type cation-exchange chromatography with ferrocene-labeled anti-hemoglobin antibody and electrochemical detector for determination of hemoglobin A1c level.” Analytica Chimica Acta, pp.186–190, 2009.
[4] Y. C. Li, U. Pfüller, E. L. Larsson, H. Jungvid, and I. Yu. Galaev, and B. Mattiasson “Separation of mistletoe lectins based on the degree of glycosylation using boronate affinity chromatography.” Journal of Chromatography A, Vol. 925, pp.115–121, 2001.
[5] L. Qu, S. Xia, C. Bian, J. Sun, and J. Han. “A micro potentiometric hemoglobin immunosensor based on electropolymerized polypyrrole gold nanoparticles composite.” Biosensors and Bioelectronics, Vol. 24, pp. 3419–3424, 2009.
[6] M. Jenkins and S. Ratnaike, “Capillary Electrophoresis of Hemoglobin.” Clinical Chemistry and Laboratory Medicine, Vol. 41, Issue 6, pp. 747–754, 2003.
[7] M. E. C. Busto, M. Montes-Bayón, E. Añónb and A. Senz-Medel, “Simultaneous determination of glycated haemoglobin, a long term biomarker of diabetes mellitus, and total haemoglobin by isotope dilution and HPLC-ICP-MS.” Journal of Analytical Atomic Spectrometry, Vol. 23, pp. 758–764, 2008.
[8] D. Stöllner, W. Stöcklein, F. Scheller, and A. Warsinke, “Membrane immobilized haptoglobin as affinity matrix for a hemoglobin-A1c immunosensor.”Analytica Chimica Acta, Vol. 470, pp. 111–119, 2002.
[9] L. Fanga, W. Li, Y. Zhou, C. C. Liu,“A single-use, disposable iridium-modified electrochemical biosensor for fructosyl valine for the glycoslated hemoglobin detection.” Sensors and Actuators B, Vol. 137, pp. 235–238, 2009.
[10] S. Y. Son, Y. D. Han, K. H. Lee and H. C. Yoon, “Electrochemical Assay for Glycated Hemoglobin based on the Magnetic Particle-supported Concentration Coupled to Boronate-diol Interactions.” Bulletin of the Korean Chemical Society, Vol. 31, No. 7, 2010.
[11] J. Pˇribyl and P. Skl´adal,“Quartz crystal biosensor for detection of sugars and glycated hemoglobin.”Analytica Chimica Acta, Vol. 530, pp. 75–84, 2005.
[12] J. Přibyl and P. Skládal,“Development of a combined setup for simultaneous detection of total and glycated haemoglobin content in blood samples.”Biosensors and Bioelectronics, Vol. 21, pp. 1952–1959, 2006.
[13] J. Halámeka, U. Wollenbergera, W. F. M. Stöckleina, A. Warsinkea, F. W. Schellera,“Signal Amplification in Immunoassays Using Labeling via Boronic Acid Binding to the Sugar Moiety of Immunoglobulin G: Proof of Concept for Glycated Hemoglobin.”Analytical Letters, Vol. 40, pp. 1434–1444, 2007.
[14] M. Dijksma, B. Kamp, J. C. Hoogvliet, and W. P. Bennekom,“Formation and Electrochemical Characterization of Self-Assembled Monolayers of Thioctic Acid on Polycrystalline Gold Electrodes in Phosphate Buffer pH 7.4.”Langmuir, Vol. 16, pp. 3852-3857, 2000.
[15] M. Dijksma, B. A. Boukamp, B. Kamp, and W. P. Bennekom, “Effect of Hexacyanoferrate(II/III) on Self-Assembled Monolayers of Thioctic Acid and 11-Mercaptoundecanoic Acid on Gold.”Langmuir, Vol. 18, pp. 3105-3112, 2002.
[16] J. Rickert, W. Göpel, W. Beck, G. Jung and P. Heiduschka,“A "mixed' self-assembled monolayer for an impedimetric immunosensor.”Biosensors and Bioelectronics, Vol. 11, Issue 8, pp. 757-768, 1996.
[17] T. L. Lasseter, W. Cai and R. J. Hamers, “Frequency-dependent electrical detection of protein binding events.” Analyst, Vol. 129, pp. 3-8, 2004.
[21] C. Berggren, B. Bjarnason, and G. Johansson, “Capacitive Biosensors”Electroanalysis, Vol. 13, No. 3, 2001.
[22] D. K. Aswal, S. Lenfant, D. Guerin, J. V. Yakhmi and D. Vuillaume, “Self-assembled monolayers on silicon for molecular electronics.”Analytica Chimica Acta, Vol. 568, pp. 84–108, 2006.
[23] X. C. Jiang, T. P. Beyer, Z. Li, J. Liu, W. Quan, R. J. Schmidt, Y. Zhang, W. R. Bensch, P. I. Eacho and G. Cao, “Enlargement of high density lipoprotein in mice via liver X receptor activation requires apolipoprotein E and is abolished by cholesteryl ester transfer protein expression” The Journal of Biological Chemistry, Vol. 278, pp.49072–49078, 2003.
[24] L. S. Jang and H. K. Keng, “Development and characterization of 4,4-dithiodibutyric acid as a monolayer for protein chips.”Sensors and Materials, Vol. 18, No. 7, pp. 367-380, 2006.
[25] L. S. Jang and H. J. Liu, “Fabrication of protein chips based on 3-aminopropyltriethoxysilane as a monolayer.”Biomedical Microdevices, Vol. 11, pp. 331–338, 2009.
[26] S. V. Rao, K. W. Anderson, and L. G. Bachas,“Oriented immobilization of proteins.“Mikrochimica Acta, Vol. 128, pp. 127-143, 1998.
[27] H. Zhu, M. Bilgen, R. Bangham, D. Hall, A. Casamayor, P. Bertone, N. Lan, R. Jansen, S. Bidlingmaier, T. Houfek, T. Mitchell, P. Miller, R. A. Dean, M. Gerstein, and M. Snyder,“Global analysis of protein activities using proteome chips.”Science, Vol. 293, pp. 2101-2105, 2001.
[28] W. H. Robinson, C. DiGennaro, B.B. Haab, M. Kamachi, E. J. Dean, S. Fournel, D. Fong, M. C. Genovese, N. N. de Vegvar, K. Skriner, D. L. Hieschberg, R. I. Morris, S. Muller, G. J. Prujin, W. J. van Venrooij, J. S. Smolen, P. O. Brown, L. Steinman, and P. J. Utz, “Autoantigen microarrays for multiplex characterization of autoantibody responses.” Nature Medicine, Vol. 8, pp. 295-301, 2002.
[29] S. Y. Seong,“Microimmunoassay using a protein chip: optimizing conditions for protein immobilization.” Clinical and Diagnostic Laboratory Immunology, Vol. 9, pp. 927-930, 2002.
[30] R. A. Williamsa and H. W. Blanch. “Covalent immobilization of protein monolayers for biosensor applications.” Biosensors and Bioelectronics, Vol. 9, Issue 2,159-167, 1994.
[31] http://www.piercenet.com
[32] S. Liu, B. Miller, and A. Chen, “Phenylboronic acid self-assembled layer on glassy carbon electrode for recognition of glycoprotein peroxidase.” Electrochemistry Communications, Vol. 7, pp. 1232–1236, 2005.
[33] N. Kanayama and H. Kitano, “Interfacial Recognition of Sugars by boronic Acid-carrying self-assembled monolayer.” Langmuir, Vol. 16, pp. 577-583, 2000.
[34] L. C. Clark, Jr., and C. Lyons. “Electrode systems for continuous monitoring in cardiovascular surgery.” The New York Academy of Sciences, Vol. 102, pp. 29-45, 1962.
[35] M. N. Velasco and T. Mottram, “Biosensor technology addressing agricultural problems.” Biosystems Engineering, Vol. 84, Issue 1, pp. 1-12, 2003.
[36] S. Hleli, C. Martelet, A. Abdelghani, N. Burais, and N. Jaffrezic-Renault. “Atrazine analysis using an impedimetric immunosensor based on mixed biotinylated self-assembled monolayer.” Sensors and Actuators B, Vol. 113, pp.711–717, 2006.
[37] N. N. Mishra, S. Retterer, T. J. Zieziulewicz, M. Isaacson, D. Szarowski, D. E. Mousseau, D.A. Lawrence, and J. N. Turner, “On-chip micro-biosensor for the detection of human CD4+ cells based on AC impedance and optical analysis.” Biosensors and Bioelectronics, Vol. 21, pp. 696-704, 2005.
[38] W. Knoll, F. Yu, T. Neumann, S. Schiller and R. Naumann, “Supramolecular functional interfacial architectures for biosensor applications.” Physical Chemistry Chemical Physics, Vol. 5, pp. 5169–5175, 2003.
[39] J. J. Gooding, “Electrochemical DNA Hybridization Biosensors.” Electroanalysis, Vol. 14, No. 17, pp. 1149–1156, 2002.
[40] A. Ap. P. Ferreira, M. J. M. Alves, S. Barrozo, H. Yamanaka, and A. V. Benedetti, “Optimization of incubation time of protein Tc85 in the construction of biosensor: is the EIS a good tool?” Journal of electroanalytical chemistry, Vol. 643, pp. 1-8, 2010.
[41] G. Barbero, A. L. Alexe-Ionescu, and I. Lelidis, ”Significance of small voltage in impedance spectroscopy measurements on electrolytic cells.” Journal of applied physics, Vol. 98, 113703, 2005.
[42] Z. Zou, J. Han, A. Jang, P. L. Bishop, and C. H. Ahn. “A disposable on-chip phosphate sensor with planar cobalt microelectrodes on polymer substrate.” Biosensors and Bioelectronics, Vol. 22, pp. 1902–1907, 2007.
[43] J. Y. Park, S. H. Kwon, J. W. Park, and S. M. Park, “Label-free detection of DNA molecules on the dendron based self-assembled monolayer by electrochemical impedance spectroscopy.” Analytica Chimica Acta, Vol. 619, No. 1, pp. 37-42, 2008.
[44] F. Terzi, R. Seeber, L. Pigani, C. Zanardi, L.Pasquali, S. Nannarone, M. Fabrizio, and S. Daolio,“3-Methylthiophene Self-Assembled Monolayers on Planar and Nanoparticle Au Surfaces.”The Journal of Physical Chemistry B, Vol.109, No. 41, pp. 19397–19402, 2005.
[45] S. C. Pak, W. Penrose and P. J. Hesketh,“An ultrathin platinum film sensor to measure biomolecular binding.” Biosensors and Bioelectronics, Vol. 16, pp. 371–379, 2001.
[46] O. R. Camara, L. B. Avalle, and F. Y. Oliva,“Protein adsorption on titanium dioxide: Effects on double layer and semiconductor space charge region studied by EIS”, Electrochimica Acta, Vol. 55, pp. 4519-4528, 2010.
[47] Z. Wu, B. Wang, Z. Cheng, X. Yang, S. Dong and E. Wang, “A facile approach to immobilize protein for biosensor: self-assembled supported bilayer lipid membranes on glassy carbon electrode.” Biosensors and Bioelectronics, Vol. 16, pp. 47–52, 2001.
[48] S. Varma and C. K. Mitra,“Low Frequency Impedance Studies on Covalently Modified Glassy.” Electroanalysis, Vol. 14, No. 22, 2002.
[49] N. Zaveri, M. Mahapatra, A. Deceuster, Y. Peng, L. Li and A. Zhou,“Corrosion resistance of pulsed laser-treated Ti–6Al–4V implant in simulated biofluids.” Electrochimica Acta, Vol. 53, 5022, 2008.
[50] T. Sun, N. G. Green, S. Gawad and H. Morgan, “Analytical electric field and sensitivity analysis for two microfluidic impedance cytometer designs.” IET Nanobiotechnology, Vol. 1, No. 5, 2007.
[51] J. S. Danielsa, and N. Pourmand,“Label-Free Impedance Biosensors_Opportunities and Challenges.” Electroanalysis, Vol. 19, No.12, pp. 1239–1257, 2007.
[52] J. Y. Park, B. Y. Chang, H. Nam, and S. M. Park, “Selective Electrochemical Sensing of HbA1c on Thiophene-3-Boronic Acid Self-Assembled Monolayer Covered Gold Electrodes.” Analytical Chemistry, Vol. 80, pp. 8035–8044, 2008.
[53] N. T. Flynn, T. N. T. Tran, M. J. Cima and R. Langer, “Long-term stability of self-assembled monolayers in biological media.” Langmuir, Vol.19, pp.10909–10915, 2003.
[54] J. C. Love , L. A. Estroff , J. K. Kriebel , R. G. Nuzzo and G. M. Whitesides, "New approaches to nanofabrication: molding, printing, and other techniques" Chemical Reviews, Vol. 105: 1103, 2005.
[55] T. MATSUURA, M. NAKAJIMA and Y. SHIMOYAMA,“Growth of Self-Assembled Monolayer of Thiophene on Gold Surface.” The Japan Society of Applied Physics, Vol. 40, pp. 6945–6950, 2001.
[56] C. J. Pouchert,“The Aldrich Library of FT-IR Spectra Aldrich Chemical Co.” Milwaukee, ed. 1, Vol. 2, 1985.
[57] M. Rico, J. M. Orza and J. Morcillo, “Fundamental vibrations of thiophene and its deuterated derivatives.” Spectrochimica Acta, Vol. 21, Issue 4, pp. 689-719, 1965.
[58] S. Takahashi and J. I. Anzai,“Phenylboronic acid monolayer-modified electrodes sensitive to sugars.” Langmuir, Vol. 21, No. 11, 5102–5107, 2005.
[59] J. T. Liu, L. Y. Chen, M. C. Shih, Y. Chang, and W. Y. Chen, “The investigation of recognition interaction between phenylboronate.” Analytical Biochemistry, Vol. 375, pp. 90–96, 2008.
[60] J. Přibyl and P. Skládal, “Quartz crystal biosensor for detection of sugars and glycated hemoglobin.” Corresponding Author Contact Information, 2005.
[61] Z. S. Wu, J. S. Li, T. Deng, M. H. Luo, G. L. Shen, and R. Q. Yu, “The investigation of recognition interaction between phenylboronate monolayer and glycated hemoglobin using surface plasmon resonance.” Analytical Biochemistry, Vol. 337, pp. 308–315, 2005.
[62] M. Batr, ECA Stigter, H. R. Stapert, G. J. De Jong, and W. P. Van Bennekom, “On the response of a label-free interferon-immunosensor utilizing electrochemical impedance spectroscopy.” Biosensors and Bioelectronics, Vol. 21, pp. 49–59, 2005.
[63] W. Daseler, H. J. Steinhoff and A. Redhardt, “A new method for the determination of the permittivity of small samples in the microwave range and its application to hemoglobin single crystals.”Journal of Biochemical and Biophysical Methods, Vol. 22, pp. 69–82, 1991.
[64] Y. Ohta, H. Okamoto, M. Kanno, and T. Okuda,“Atomic force microscopic observation of mechanically traumatized erythrocytes.” Artificial Organs, Vol. 26, No. 1, pp. 10-7, 2002.
[65] P. Bergveld, “Thirty years of ISFETOLOGY:What happened in the past 30 years and what may happen in the next 30 years.” Sensors and Actuators B, Vol. 88, pp. 1–20, 2003.
校內:2014-08-30公開