| 研究生: |
林庭浩 Lin, Ting-Hao |
|---|---|
| 論文名稱: |
低溫燒結、低損耗微波介電陶瓷材料Na5-xAgxTb(MoO4)4 (x= 0–0.09)、KLa(MoO4)2之研究及5G陣列天線之應用 Study on Low-Temperature Sintering and Low-Loss Microwave Dielectric Ceramics Na5-xAgxTb(MoO4)4 (x= 0–0.09) and KLa(MoO4)2 for 5G Array Antenna Applications |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 低溫燒結 、低損耗 、微波介電特性 、陣列天線 |
| 外文關鍵詞: | Low-Temperature Sintering, Low-Loss, Microwave dielectric properties, Array Antenna |
| 相關次數: | 點閱:52 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文將會分為二大部分作介紹,第一部分為研究低溫燒結、低損耗微波介電陶瓷材料之微波介電性能;第二部分則是使用三種不同基板設計2x2陣列天線,並分析模擬與實作之結果。
首先第一部分為Na5-xAgxTb(MoO4)4 (x= 0–0.09)陶瓷之微波介電特性,純相的Na5Tb(MoO4)4陶瓷在燒結溫度590oC下持溫4小時,可得最佳微波介電特性r ~ 7.6、Qf ~ 35,300 GHz和f ~ –26.7 ppm/oC;具有微量替代的Na4.93Ag0.07Tb(MoO4)4陶瓷在燒結溫度530°C下持溫4小時,可得最佳微波介電特性r ~ 8.51、Qf ~ 53,900 GHz和f ~ –24.9 ppm/°C;KLa(MoO4)2陶瓷之微波介電特性,在燒結溫度820oC下持溫4小時,可得最佳微波介電特性r ~ 9.63、Qf ~ 50,100 GHz和f ~ –75.7 ppm/oC。研究顯示除了相對密度和微觀結構外,填充率、鍵離子度、晶格能和鍵能在控制微波頻率下陶瓷之介電性能方面也起著至關重要的作用。
第二部分為使用HFSS軟體設計一應用於毫米波頻段(介於26.5 ~ 28.5 GHz)的2x2陣列天線,並將模擬電路實作於FR4、Al2O3及Na4.93Ag0.07Tb(MoO4)4三種基板上,結果顯示具低介電損耗的陶瓷材料能提升天線之表現。
Microwave dielectric ceramic materials Na5-xAgxTb(MoO4)4 (x= 0–0.09) and KLa(MoO4)2 were prepared using the conventional solid-state method. This study investigated the intrinsic and extrinsic factors affecting the microwave dielectric properties of these ceramic materials. The Na5-xAgxTb(MoO4)4 (x = 0.07) ceramic, sintered at 530°C for 4 hours, exhibited r ~ 8.51, Qf ~ 53,900 GHz, and f ~ –24.9 ppm/°C; while the KLa(MoO4)2 ceramic, sintered at 820°C for 4 hours, demonstrated r ~ 9.63, Qf ~ 50,100, and f ~ -75.7 ppm/°C. Additionally, both Na5-xAgxTb(MoO4)4 (x= 0–0.09) and KLa(MoO4)2 ceramic materials showed good chemical compatibility with aluminum and silver electrodes, making them promising candidates for ultra-low temperature co-fired ceramics (ULTCC) and low-temperature co-fired ceramics (LTCC) technologies. Based on these results, Na5-xAgxTb(MoO4)4 (x= 0–0.09) ceramics exhibit potential for ULTCC applications, such as array antennas in the millimeter-wave frequency range, due to their low-loss characteristics.
[1] T.-H. Hsu and C.-L. Huang, "Low-loss microwave dielectric of novel Li1-2xMxVO3 (M= Mg, Zn)(x= 0–0.09) ceramics for ULTCC applications," Journal of the European Ceramic Society, vol. 41, no. 12, pp. 5918-5923, 2021.
[2] C.-L. Huang, J.-L. Huang, and T.-H. Hsu, "Microwave dielectric properties of novel Na2Mg5-xZnx(MoO4)6 (x= 0–0.09) ceramics for ULTCC applications," Materials Research Bulletin, vol. 141, p. 111355, 2021.
[3] J. Dhanya, E. K. Suresh, R. Naveenraj, and R. Ratheesh, "Synthesis and characterization of Na5M (MoO4)4 (M= Y, Yb) microwave ceramics for ULTCC applications," Ceramics International, vol. 44, no. 6, pp. 6699-6704, 2018.
[4] D. Zhou et al., "Low temperature firing microwave dielectric ceramics (K0. 5Ln0. 5)MoO4 (Ln= Nd and Sm) with low dielectric loss," Journal of the European Ceramic Society, vol. 31, no. 15, pp. 2749-2752, 2011.
[5] P. Forzatti, F. Trifiro, and P. Villa, "CdTeMoO6, CoTeMoO6, MnTeMoO6, and ZnTeMoO6: a new class of selective catalysts for allylic oxidation of butene and propylene," Journal of Catalysis, vol. 55, no. 1, pp. 52-57, 1978.
[6] C.-L. Huang and T.-H. Hsu, "Ultra-low temperature sintering and temperature stable microwave dielectrics of phase pure AgMgVO4 ceramics," Journal of the European Ceramic Society, vol. 42, no. 9, pp. 3892-3897, 2022.
[7] M. Ma et al., "5G microstrip patch antenna and microwave dielectric properties of cold sintered LiWVO6–K2MoO4 composite ceramics," Ceramics International, vol. 47, no. 13, pp. 19241-19246, 2021.
[8] R. B. Nelsen and R. B. Nelsen, "Methods of constructing Copulas," An Introduction to Copulas, pp. 45-87, 1999.
[9] K. Hwang, R. German, and F. Lenel, "Capillary forces between spheres during agglomeration and liquid phase sintering," Metallurgical Transactions A, vol. 18, pp. 11-17, 1987.
[10] R. Raj, R. Tsai, J.-G. Wang, and C. Chyung, "Superplastic flow in ceramics enhanced by a liquid phase," Deformation of Ceramic Materials II, pp. 353-378, 1984.
[11] R. M. German, P. Suri, and S. J. Park, "Liquid phase sintering," Journal of materials science, vol. 44, pp. 1-39, 2009.
[12] J. W. Cahn and R. Heady, "Analysis of Capillary Forces in Liquid‐Phase Sintering of Jagged Particles," Journal of the American Ceramic Society, vol. 53, no. 7, pp. 406-409, 1970.
[13] R. B. Heady and J. W. Cahn, "An analysis of the capillary forces in liquid-phase sintering of spherical particles," Metallurgical Transactions, vol. 1, pp. 185-189, 1970.
[14] R. M. German, Sintering theory and practice. 1996.
[15] "<D. M. Pozar, Microwave engineering. John wiley & sons, 2011..pdf>."
[16] H. Arwin, M. Poksinski, and K. Johansen, "Total internal reflection ellipsometry: principles and applications," Applied optics, vol. 43, no. 15, pp. 3028-3036, 2004.
[17] D. Kajfez, A. W. Glisson, and J. James, "Computed modal field distributions for isolated dielectric resonators," IEEE transactions on Microwave Theory and Techniques, vol. 32, no. 12, pp. 1609-1616, 1984.
[18] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics. John wiley & sons, 1976.
[19] A. J. Moulson and J. M. Herbert, Electroceramics: materials, properties, applications. John Wiley & Sons, 2003.
[20] J. P. Schaffer, "The science and design of engineering materials," (No Title), 1999.
[21] E. C. Liang, "An overview of high q te mode dielectric resonators and applications," Microwave journal, vol. 58, no. 2, pp. 72-82, 2015.
[22] H. Yu et al., "Impact of ultraviolet radiation on the aging properties of SBS-modified asphalt binders," Polymers, vol. 11, no. 7, p. 1111, 2019.
[23] Y.-L. Hsieh, T.-H. Hsu, and C.-L. Huang, "Microwave dielectric properties of MnTeMoO6 ceramic and lowering its dielectric loss by using Mg-substitution in the A-site," Journal of Alloys and Compounds, vol. 947, p. 169636, 2023.
[24] H. Hu et al., "BaMnV2O7: a novel microwave dielectric ceramic for LTCC applications," Ceramics International, vol. 47, no. 22, pp. 31506-31511, 2021.
[25] M. T. Sebastian and H. Jantunen, "Low loss dielectric materials for LTCC applications: a review," International Materials Reviews, vol. 53, no. 2, pp. 57-90, 2008.
[26] G. Subodh and M. Sebastian, "Glass‐free Zn2Te3O8 microwave ceramic for LTCC applications," Journal of the American Ceramic Society, vol. 90, no. 7, pp. 2266-2268, 2007.
[27] Z. Di, P. Li-Xia, Q. Ze-Ming, J. Biao-Bing, and Y. Xi, "Novel ultra-low temperature co-fired microwave dielectric ceramic at 400 degrees and its chemical compatibility with base metal," Scientific reports, vol. 4, no. 1, p. 5980, 2014.
[28] X. Luo et al., "Microstructure, sinterability and properties of CaO-B2O3-SiO2 glass/Al2O3 composites for LTCC application," Ceramics International, vol. 43, no. 9, pp. 6791-6795, 2017.
[29] U. A. Neelakantan, S. E. Kalathil, and R. Ratheesh, "Structure and microwave dielectric properties of ultralow‐temperature cofirable BaV2O6 ceramics," European Journal of Inorganic Chemistry, vol. 2015, no. 2, pp. 305-310, 2015.
[30] M. Valant, G. S. Babu, M. Vrcon, T. Kolodiazhnyi, and A. K. Axelsson, "Pyrochlore range from Bi2O3–Fe2O3–TeO3 system for LTCC and photocatalysis and the crystal structure of new Bi3 (Fe0. 56Te0. 44) 3O11," Journal of the American Ceramic Society, vol. 95, no. 2, pp. 644-650, 2012.
[31] M. Yu, Y. Tang, J. Li, W. Fang, L. Duan, and L. Fang, "Microwave dielectric properties and chemical compatibility with alumina electrode of two novel ultra-low temperature firing ATeMoO6 (A= Mg, Zn) ceramics," Ceramics International, vol. 46, no. 16, pp. 25619-25625, 2020.
[32] X. Yuan, X. Xue, F. Jin, and H. Wang, "High-Q (Na1-xAgx)2WO4 (x= 0.1, 0.2) ceramics with ultra-low sintering temperature," Journal of the European Ceramic Society, vol. 39, no. 14, pp. 4156-4159, 2019.
[33] C. Li, C. Yin, J. Khaliq, and L. Liu, "Ultralow-temperature synthesis and densification of Ag2CaV4O12 with improved microwave dielectric performances," ACS Sustainable Chemistry & Engineering, vol. 9, no. 43, pp. 14461-14469, 2021.
[34] M. Guo, Y. Li, G. Dou, and J. Lin, "A new microwave dielectric ceramics for LTCC applications: Li2Mg2(WO4)3 ceramics," Journal of Materials Science: Materials in Electronics, vol. 25, pp. 3712-3715, 2014.
[35] A. Sasidharanpillai, C. H. Kim, C. H. Lee, M. T. Sebastian, and H. T. Kim, "Environmental friendly approach for the development of ultra-low-firing Li2WO4 ceramic tapes," ACS Sustainable Chemistry & Engineering, vol. 6, no. 5, pp. 6849-6855, 2018.
[36] "<第二章天線基本理論, 2004,羅文信..pdf>."
[37] J. Jung, W. Choi, and J. Choi, "A small wideband microstrip-fed monopole antenna," IEEE microwave and wireless components letters, vol. 15, no. 10, pp. 703-705, 2005.
[38] Y. Hwang, "Satellite antennas," Proceedings of the IEEE, vol. 80, no. 1, pp. 183-193, 1992.
[39] R. L. Haupt and Y. Rahmat-Samii, "Antenna array developments: A perspective on the past, present and future," IEEE Antennas and Propagation Magazine, vol. 57, no. 1, pp. 86-96, 2015.
[40] R. A. Pucel, D. J. Masse, and C. P. Hartwig, "Losses in microstrip," IEEE transactions on microwave theory and techniques, vol. 16, no. 6, pp. 342-350, 1968.
[41] "RF、數位/類比設計必知:傳輸線的種類," 2017.
[42] J.-S. G. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications. John Wiley & Sons, 2004.
[43] 張育涵, "新型微小化 WiMAX (2~ 6GHz) 寬頻帶通濾波器之研製," 2009.
[44] "<64-35.pdf>."
[45] 趙工, "元器件高頻模型及微帶元件," July 9, 2021.
[46] G. Kompa, "Practical microstrip design and applications," (No Title), 2005.
[47] E. J. Denlinger, "Losses of microstrip lines," IEEE Transactions on Microwave Theory and Techniques, vol. 28, no. 6, pp. 513-522, 1980.
[48] G. Matthaei, "Microwave filters, impedance-matching networks and coupling structures," Artech House Book, pp. 775-809, 1980.
[49] D. M. John, S. Vincent, S. Pathan, P. Kumar, and T. Ali, "Flexible antennas for a Sub-6 GHz 5G band: a comprehensive review," Sensors, vol. 22, no. 19, p. 7615, 2022.
[50] W. E. Courtney, "Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators," IEEE Transactions on Microwave Theory and Techniques, vol. 18, no. 8, pp. 476-485, 1970.
[51] R. D. Shannon, "Dielectric polarizabilities of ions in oxides and fluorides," Journal of Applied physics, vol. 73, no. 1, pp. 348-366, 1993.
[52] E. S. Kim, B. S. Chun, R. Freer, and R. J. Cernik, "Effects of packing fraction and bond valence on microwave dielectric properties of A2+ B6+ O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics," Journal of the European Ceramic Society, vol. 30, no. 7, pp. 1731-1736, 2010.
[53] E. S. Kim, C. J. Jeon, and P. G. Clem, "Effects of crystal structure on the microwave dielectric properties of ABO 4 (A= Ni, Mg, Zn and B= Mo, W) ceramics," Journal of the American Ceramic Society, vol. 95, no. 9, pp. 2934-2938, 2012.
[54] L. Jiang, S. Liu, H. Li, P. Zhang, Q. Wen, and B. Yang, "Ba6Nb4SnO18: An AnBn-1O3n-type hexagonal perovskite microwave dielectric ceramic with low-loss," Ceramics International, 2023.
[55] K. Liu, C. Liu, J. Li, L. Jin, and H. Zhang, "Relationship between structure and properties of microwave dielectric ceramic Li (1+ x) 2MgTi3O8 based on Li non-stoichiometry," Journal of Materiomics, vol. 9, no. 2, pp. 279-288, 2023.
[56] Z. Qing, X. Zhou, H. Zou, H. Li, and Y. Li, "Crystal structure, Raman spectrum, and bond characteristics of Ca1-xZnxV2O6 microwave dielectric ceramic with low sintering temperature," Materials Research Bulletin, vol. 170, p. 112587, 2024.
[57] F. Huang, H. Su, Q. Zhang, X. Wu, Y. Li, and X. Tang, "Na-doped diopside microwave ceramics with dielectric properties influenced by the sintering, lattice vibration and chemical bond characteristics," Journal of Alloys and Compounds, vol. 896, p. 162973, 2022.
[58] Q. Zhang, H. Su, M. Zhong, Y. Li, X. Tang, and Y. Jing, "Bond characteristics and microwave dielectric properties on Zn3-xCux (BO3) 2 ceramics with ultralow dielectric loss," Ceramics International, vol. 47, no. 4, pp. 4466-4474, 2021.
[59] L. Macalik, "Comparison of the spectroscopic and crystallographic data of Tm3+ in the different hosts: KLn(MO4)2 where Ln Y, La, Lu and M Mo, W," Journal of alloys and compounds, vol. 341, no. 1-2, pp. 226-232, 2002.
[60] C. S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov, and V. Atuchin, "The modulated structure and frequency upconversion properties of CaLa2(MoO4)4: Ho3+/Yb3+ phosphors prepared by microwave synthesis," Physical Chemistry Chemical Physics, vol. 17, no. 29, pp. 19278-19287, 2015.
校內:2029-07-30公開