簡易檢索 / 詳目顯示

研究生: 林庭浩
Lin, Ting-Hao
論文名稱: 低溫燒結、低損耗微波介電陶瓷材料Na5-xAgxTb(MoO4)4 (x= 0–0.09)、KLa(MoO4)2之研究及5G陣列天線之應用
Study on Low-Temperature Sintering and Low-Loss Microwave Dielectric Ceramics Na5-xAgxTb(MoO4)4 (x= 0–0.09) and KLa(MoO4)2 for 5G Array Antenna Applications
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 136
中文關鍵詞: 低溫燒結低損耗微波介電特性陣列天線
外文關鍵詞: Low-Temperature Sintering, Low-Loss, Microwave dielectric properties, Array Antenna
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文將會分為二大部分作介紹,第一部分為研究低溫燒結、低損耗微波介電陶瓷材料之微波介電性能;第二部分則是使用三種不同基板設計2x2陣列天線,並分析模擬與實作之結果。
    首先第一部分為Na5-xAgxTb(MoO4)4 (x= 0–0.09)陶瓷之微波介電特性,純相的Na5Tb(MoO4)4陶瓷在燒結溫度590oC下持溫4小時,可得最佳微波介電特性r ~ 7.6、Qf ~ 35,300 GHz和f ~ –26.7 ppm/oC;具有微量替代的Na4.93Ag0.07Tb(MoO4)4陶瓷在燒結溫度530°C下持溫4小時,可得最佳微波介電特性r ~ 8.51、Qf ~ 53,900 GHz和f ~ –24.9 ppm/°C;KLa(MoO4)2陶瓷之微波介電特性,在燒結溫度820oC下持溫4小時,可得最佳微波介電特性r ~ 9.63、Qf ~ 50,100 GHz和f ~ –75.7 ppm/oC。研究顯示除了相對密度和微觀結構外,填充率、鍵離子度、晶格能和鍵能在控制微波頻率下陶瓷之介電性能方面也起著至關重要的作用。
    第二部分為使用HFSS軟體設計一應用於毫米波頻段(介於26.5 ~ 28.5 GHz)的2x2陣列天線,並將模擬電路實作於FR4、Al2O3及Na4.93Ag0.07Tb(MoO4)4三種基板上,結果顯示具低介電損耗的陶瓷材料能提升天線之表現。

    Microwave dielectric ceramic materials Na5-xAgxTb(MoO4)4 (x= 0–0.09) and KLa(MoO4)2 were prepared using the conventional solid-state method. This study investigated the intrinsic and extrinsic factors affecting the microwave dielectric properties of these ceramic materials. The Na5-xAgxTb(MoO4)4 (x = 0.07) ceramic, sintered at 530°C for 4 hours, exhibited r ~ 8.51, Qf ~ 53,900 GHz, and f ~ –24.9 ppm/°C; while the KLa(MoO4)2 ceramic, sintered at 820°C for 4 hours, demonstrated r ~ 9.63, Qf ~ 50,100, and f ~ -75.7 ppm/°C. Additionally, both Na5-xAgxTb(MoO4)4 (x= 0–0.09) and KLa(MoO4)2 ceramic materials showed good chemical compatibility with aluminum and silver electrodes, making them promising candidates for ultra-low temperature co-fired ceramics (ULTCC) and low-temperature co-fired ceramics (LTCC) technologies. Based on these results, Na5-xAgxTb(MoO4)4 (x= 0–0.09) ceramics exhibit potential for ULTCC applications, such as array antennas in the millimeter-wave frequency range, due to their low-loss characteristics.

    摘要I 誌謝IX 目錄X 表目錄XV 圖目錄XVII 第一章 緒論1 1-1前言1 1-2研究目的3 第二章 文獻回顧5 2-1微波介電陶瓷之發展5 2-2陶瓷材料的燒結6 2-2-1燒結的種類6 2-2-2材料燒結之過程9 2-2-3材料燒結之擴散方式10 2-3 介電共振器(DR)10 2-3-1介電共振器原理11 2-4微波介電材料之特性14 2-4-1介電係數(DIELECTRIC CONSTANT, R)14 2-4-2品質因數(QUALITY FACTOR, Q)17 2-4-3共振頻率溫度飄移係數(F )20 2-5拉曼光譜與分子振動模態簡介21 2-5-1拉曼光譜(RAMAN SPECTRA)21 2-5-2分子的振動模態(VIBRATIONAL MODES)21 2-6低溫共燒陶瓷(LTCC)技術簡介23 2-7超低溫共燒陶瓷(ULTCC)技術簡介24 第三章 天線及微帶線原理25 3-1天線原理25 3-1-1天線簡介25 3-1-2天線之種類及其應用26 3-2微帶線原理28 3-2-1微帶傳輸線簡介28 3-2-2微帶線的傳輸模態-準TEM波(QUASI-TEM)29 3-2-3微帶線各項參數公式計算30 3-2-4微帶線的不連續效應32 3-2-5微帶線的損耗37 3-3 天線的饋電方式39 3-4 天線設計步驟40 第四章 實驗程序與量測儀器43 4-1微波介電材料之製備43 4-1-1粉末的製備與球磨44 4-1-2粉末乾燥與煆燒44 4-1-3加入黏著劑、過篩44 4-1-4壓模成形、去黏著劑及燒結45 4-2微波介電材料的量測與分析45 4-2-1 X-RAY分析45 4-2-2 密度測量46 4-2-3 SEM分析46 4-2-4拉曼光譜儀分析46 4-2-5微波介電特性量測方法47 4-3天線的製作過程50 第五章 實驗結果與討論52 5-1 NA5-XAGXTB(MOO4)4 (X= 0–0.09)之材料特性分析53 5-1-1 NA5-XAGXTB(MOO4)4 (X= 0–0.09)之XRD相組成分析53 5-1-2 NA5-XAGXTB(MOO4)4 (X= 0.01–0.09)之晶格常數分析55 5-1-3 NA5-XAGXTB(MOO4)4 (X= 0.01–0.09)之SEM及粒徑分布分析58 5-1-4 NA5-XAGXTB(MOO4)4 (X= 0–0.09)之相對密度分析60 5-1-5 Na5-xAgxTb(MoO4)4 (x= 0–0.09)之介電係數(r)分析61 5-1-6 NA5-XAGXTB(MOO4)4 (X= 0–0.09)之品質因數與共振頻率乘積(QF)分析62 5-1-7 NA5-XAGXTB(MOO4)4 (X= 0–0.09)之共振頻率溫度飄移係數(F )分析64 5-1-8 NA5-XAGXTB(MOO4)4 (X= 0–0.09)之拉曼光譜分析65 5-1-9 NA5-XAGXTB(MOO4)4 (X= 0.01–0.09)之化學鍵理論(P-V-L THEORY)分析67 5-1-10 NA4.93AG0.07TB(MOO4)4與鋁共燒75 5-2 KLA(MOO4)2之材料特性分析77 5-2-1 KLA(MOO4)2之XRD相組成分析77 5-2-2 KLA(MOO4)2之晶格常數分析78 5-2-3 KLA(MOO4)2之SEM及粒徑分布分析81 5-2-4 KLA(MOO4)2之相對密度與微波介電性能分析83 5-2-5 KLA(MOO4)2之拉曼光譜分析85 5-2-6 KLA(MOO4)2之化學鍵理論(P-V-L THEORY)分析87 5-2-7 KLA(MOO4)2與銀共燒97 5-3天線的模擬與實作99 5-3-1玻璃纖維基板(FR4)之模擬與實作結果100 5-3-2氧化鋁基板(AL2O3)之模擬與實作結果102 5-3-3 NA4.93AG0.07TB(MOO4)4自製基板之天線模擬與實作結果104 第六章 結論108 參考文獻109

    [1] T.-H. Hsu and C.-L. Huang, "Low-loss microwave dielectric of novel Li1-2xMxVO3 (M= Mg, Zn)(x= 0–0.09) ceramics for ULTCC applications," Journal of the European Ceramic Society, vol. 41, no. 12, pp. 5918-5923, 2021.
    [2] C.-L. Huang, J.-L. Huang, and T.-H. Hsu, "Microwave dielectric properties of novel Na2Mg5-xZnx(MoO4)6 (x= 0–0.09) ceramics for ULTCC applications," Materials Research Bulletin, vol. 141, p. 111355, 2021.
    [3] J. Dhanya, E. K. Suresh, R. Naveenraj, and R. Ratheesh, "Synthesis and characterization of Na5M (MoO4)4 (M= Y, Yb) microwave ceramics for ULTCC applications," Ceramics International, vol. 44, no. 6, pp. 6699-6704, 2018.
    [4] D. Zhou et al., "Low temperature firing microwave dielectric ceramics (K0. 5Ln0. 5)MoO4 (Ln= Nd and Sm) with low dielectric loss," Journal of the European Ceramic Society, vol. 31, no. 15, pp. 2749-2752, 2011.
    [5] P. Forzatti, F. Trifiro, and P. Villa, "CdTeMoO6, CoTeMoO6, MnTeMoO6, and ZnTeMoO6: a new class of selective catalysts for allylic oxidation of butene and propylene," Journal of Catalysis, vol. 55, no. 1, pp. 52-57, 1978.
    [6] C.-L. Huang and T.-H. Hsu, "Ultra-low temperature sintering and temperature stable microwave dielectrics of phase pure AgMgVO4 ceramics," Journal of the European Ceramic Society, vol. 42, no. 9, pp. 3892-3897, 2022.
    [7] M. Ma et al., "5G microstrip patch antenna and microwave dielectric properties of cold sintered LiWVO6–K2MoO4 composite ceramics," Ceramics International, vol. 47, no. 13, pp. 19241-19246, 2021.
    [8] R. B. Nelsen and R. B. Nelsen, "Methods of constructing Copulas," An Introduction to Copulas, pp. 45-87, 1999.
    [9] K. Hwang, R. German, and F. Lenel, "Capillary forces between spheres during agglomeration and liquid phase sintering," Metallurgical Transactions A, vol. 18, pp. 11-17, 1987.
    [10] R. Raj, R. Tsai, J.-G. Wang, and C. Chyung, "Superplastic flow in ceramics enhanced by a liquid phase," Deformation of Ceramic Materials II, pp. 353-378, 1984.
    [11] R. M. German, P. Suri, and S. J. Park, "Liquid phase sintering," Journal of materials science, vol. 44, pp. 1-39, 2009.
    [12] J. W. Cahn and R. Heady, "Analysis of Capillary Forces in Liquid‐Phase Sintering of Jagged Particles," Journal of the American Ceramic Society, vol. 53, no. 7, pp. 406-409, 1970.
    [13] R. B. Heady and J. W. Cahn, "An analysis of the capillary forces in liquid-phase sintering of spherical particles," Metallurgical Transactions, vol. 1, pp. 185-189, 1970.
    [14] R. M. German, Sintering theory and practice. 1996.
    [15] "<D. M. Pozar, Microwave engineering. John wiley & sons, 2011..pdf>."
    [16] H. Arwin, M. Poksinski, and K. Johansen, "Total internal reflection ellipsometry: principles and applications," Applied optics, vol. 43, no. 15, pp. 3028-3036, 2004.
    [17] D. Kajfez, A. W. Glisson, and J. James, "Computed modal field distributions for isolated dielectric resonators," IEEE transactions on Microwave Theory and Techniques, vol. 32, no. 12, pp. 1609-1616, 1984.
    [18] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics. John wiley & sons, 1976.
    [19] A. J. Moulson and J. M. Herbert, Electroceramics: materials, properties, applications. John Wiley & Sons, 2003.
    [20] J. P. Schaffer, "The science and design of engineering materials," (No Title), 1999.
    [21] E. C. Liang, "An overview of high q te mode dielectric resonators and applications," Microwave journal, vol. 58, no. 2, pp. 72-82, 2015.
    [22] H. Yu et al., "Impact of ultraviolet radiation on the aging properties of SBS-modified asphalt binders," Polymers, vol. 11, no. 7, p. 1111, 2019.
    [23] Y.-L. Hsieh, T.-H. Hsu, and C.-L. Huang, "Microwave dielectric properties of MnTeMoO6 ceramic and lowering its dielectric loss by using Mg-substitution in the A-site," Journal of Alloys and Compounds, vol. 947, p. 169636, 2023.
    [24] H. Hu et al., "BaMnV2O7: a novel microwave dielectric ceramic for LTCC applications," Ceramics International, vol. 47, no. 22, pp. 31506-31511, 2021.
    [25] M. T. Sebastian and H. Jantunen, "Low loss dielectric materials for LTCC applications: a review," International Materials Reviews, vol. 53, no. 2, pp. 57-90, 2008.
    [26] G. Subodh and M. Sebastian, "Glass‐free Zn2Te3O8 microwave ceramic for LTCC applications," Journal of the American Ceramic Society, vol. 90, no. 7, pp. 2266-2268, 2007.
    [27] Z. Di, P. Li-Xia, Q. Ze-Ming, J. Biao-Bing, and Y. Xi, "Novel ultra-low temperature co-fired microwave dielectric ceramic at 400 degrees and its chemical compatibility with base metal," Scientific reports, vol. 4, no. 1, p. 5980, 2014.
    [28] X. Luo et al., "Microstructure, sinterability and properties of CaO-B2O3-SiO2 glass/Al2O3 composites for LTCC application," Ceramics International, vol. 43, no. 9, pp. 6791-6795, 2017.
    [29] U. A. Neelakantan, S. E. Kalathil, and R. Ratheesh, "Structure and microwave dielectric properties of ultralow‐temperature cofirable BaV2O6 ceramics," European Journal of Inorganic Chemistry, vol. 2015, no. 2, pp. 305-310, 2015.
    [30] M. Valant, G. S. Babu, M. Vrcon, T. Kolodiazhnyi, and A. K. Axelsson, "Pyrochlore range from Bi2O3–Fe2O3–TeO3 system for LTCC and photocatalysis and the crystal structure of new Bi3 (Fe0. 56Te0. 44) 3O11," Journal of the American Ceramic Society, vol. 95, no. 2, pp. 644-650, 2012.
    [31] M. Yu, Y. Tang, J. Li, W. Fang, L. Duan, and L. Fang, "Microwave dielectric properties and chemical compatibility with alumina electrode of two novel ultra-low temperature firing ATeMoO6 (A= Mg, Zn) ceramics," Ceramics International, vol. 46, no. 16, pp. 25619-25625, 2020.
    [32] X. Yuan, X. Xue, F. Jin, and H. Wang, "High-Q (Na1-xAgx)2WO4 (x= 0.1, 0.2) ceramics with ultra-low sintering temperature," Journal of the European Ceramic Society, vol. 39, no. 14, pp. 4156-4159, 2019.
    [33] C. Li, C. Yin, J. Khaliq, and L. Liu, "Ultralow-temperature synthesis and densification of Ag2CaV4O12 with improved microwave dielectric performances," ACS Sustainable Chemistry & Engineering, vol. 9, no. 43, pp. 14461-14469, 2021.
    [34] M. Guo, Y. Li, G. Dou, and J. Lin, "A new microwave dielectric ceramics for LTCC applications: Li2Mg2(WO4)3 ceramics," Journal of Materials Science: Materials in Electronics, vol. 25, pp. 3712-3715, 2014.
    [35] A. Sasidharanpillai, C. H. Kim, C. H. Lee, M. T. Sebastian, and H. T. Kim, "Environmental friendly approach for the development of ultra-low-firing Li2WO4 ceramic tapes," ACS Sustainable Chemistry & Engineering, vol. 6, no. 5, pp. 6849-6855, 2018.
    [36] "<第二章天線基本理論, 2004,羅文信..pdf>."
    [37] J. Jung, W. Choi, and J. Choi, "A small wideband microstrip-fed monopole antenna," IEEE microwave and wireless components letters, vol. 15, no. 10, pp. 703-705, 2005.
    [38] Y. Hwang, "Satellite antennas," Proceedings of the IEEE, vol. 80, no. 1, pp. 183-193, 1992.
    [39] R. L. Haupt and Y. Rahmat-Samii, "Antenna array developments: A perspective on the past, present and future," IEEE Antennas and Propagation Magazine, vol. 57, no. 1, pp. 86-96, 2015.
    [40] R. A. Pucel, D. J. Masse, and C. P. Hartwig, "Losses in microstrip," IEEE transactions on microwave theory and techniques, vol. 16, no. 6, pp. 342-350, 1968.
    [41] "RF、數位/類比設計必知:傳輸線的種類," 2017.
    [42] J.-S. G. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications. John Wiley & Sons, 2004.
    [43] 張育涵, "新型微小化 WiMAX (2~ 6GHz) 寬頻帶通濾波器之研製," 2009.
    [44] "<64-35.pdf>."
    [45] 趙工, "元器件高頻模型及微帶元件," July 9, 2021.
    [46] G. Kompa, "Practical microstrip design and applications," (No Title), 2005.
    [47] E. J. Denlinger, "Losses of microstrip lines," IEEE Transactions on Microwave Theory and Techniques, vol. 28, no. 6, pp. 513-522, 1980.
    [48] G. Matthaei, "Microwave filters, impedance-matching networks and coupling structures," Artech House Book, pp. 775-809, 1980.
    [49] D. M. John, S. Vincent, S. Pathan, P. Kumar, and T. Ali, "Flexible antennas for a Sub-6 GHz 5G band: a comprehensive review," Sensors, vol. 22, no. 19, p. 7615, 2022.
    [50] W. E. Courtney, "Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators," IEEE Transactions on Microwave Theory and Techniques, vol. 18, no. 8, pp. 476-485, 1970.
    [51] R. D. Shannon, "Dielectric polarizabilities of ions in oxides and fluorides," Journal of Applied physics, vol. 73, no. 1, pp. 348-366, 1993.
    [52] E. S. Kim, B. S. Chun, R. Freer, and R. J. Cernik, "Effects of packing fraction and bond valence on microwave dielectric properties of A2+ B6+ O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics," Journal of the European Ceramic Society, vol. 30, no. 7, pp. 1731-1736, 2010.
    [53] E. S. Kim, C. J. Jeon, and P. G. Clem, "Effects of crystal structure on the microwave dielectric properties of ABO 4 (A= Ni, Mg, Zn and B= Mo, W) ceramics," Journal of the American Ceramic Society, vol. 95, no. 9, pp. 2934-2938, 2012.
    [54] L. Jiang, S. Liu, H. Li, P. Zhang, Q. Wen, and B. Yang, "Ba6Nb4SnO18: An AnBn-1O3n-type hexagonal perovskite microwave dielectric ceramic with low-loss," Ceramics International, 2023.
    [55] K. Liu, C. Liu, J. Li, L. Jin, and H. Zhang, "Relationship between structure and properties of microwave dielectric ceramic Li (1+ x) 2MgTi3O8 based on Li non-stoichiometry," Journal of Materiomics, vol. 9, no. 2, pp. 279-288, 2023.
    [56] Z. Qing, X. Zhou, H. Zou, H. Li, and Y. Li, "Crystal structure, Raman spectrum, and bond characteristics of Ca1-xZnxV2O6 microwave dielectric ceramic with low sintering temperature," Materials Research Bulletin, vol. 170, p. 112587, 2024.
    [57] F. Huang, H. Su, Q. Zhang, X. Wu, Y. Li, and X. Tang, "Na-doped diopside microwave ceramics with dielectric properties influenced by the sintering, lattice vibration and chemical bond characteristics," Journal of Alloys and Compounds, vol. 896, p. 162973, 2022.
    [58] Q. Zhang, H. Su, M. Zhong, Y. Li, X. Tang, and Y. Jing, "Bond characteristics and microwave dielectric properties on Zn3-xCux (BO3) 2 ceramics with ultralow dielectric loss," Ceramics International, vol. 47, no. 4, pp. 4466-4474, 2021.
    [59] L. Macalik, "Comparison of the spectroscopic and crystallographic data of Tm3+ in the different hosts: KLn(MO4)2 where Ln Y, La, Lu and M Mo, W," Journal of alloys and compounds, vol. 341, no. 1-2, pp. 226-232, 2002.
    [60] C. S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov, and V. Atuchin, "The modulated structure and frequency upconversion properties of CaLa2(MoO4)4: Ho3+/Yb3+ phosphors prepared by microwave synthesis," Physical Chemistry Chemical Physics, vol. 17, no. 29, pp. 19278-19287, 2015.

    無法下載圖示 校內:2029-07-30公開
    校外:2029-07-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE