簡易檢索 / 詳目顯示

研究生: 陳敬寬
Chen, Jng-kuan
論文名稱: 水利堤防孔洞檢測分析及其資料庫建立之研究
指導教授: 倪勝火
Ni, Sheng-huoo
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 179
中文關鍵詞: 透地雷達孔洞資料庫非破壞性檢測
外文關鍵詞: GPR, holes, NDT, Database
相關次數: 點閱:107下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   台灣地區由於地勢陡峭地質脆弱,更因颱風豪雨侵襲容易造成水利堤防的加速破壞,因此如何迅速正確檢測出其內部孔洞之位置與範圍,以利及時有效防止意外災害的突然發生,是水利堤防施工完成後維護管理中重要的任務。目前非破壞性檢測的方法雖多,但因各種方法都有其優缺點及使用上的限制,為了符合本研究經濟性、便利性、適用性和即時性的考量,經比較評估結果能夠實際應用在堤防內部掏空調查及非破壞性分析等案例,則以透地雷達撿測法較佳。此外使用該法檢測所得的雷達影像剖面容易瞭解與判釋,且其解析能力高,確可對堤防內部孔洞做較詳實的描述,故後續是以透地雷達作為檢測分析的工具。

      本研究首先從透地雷達的相關理論、檢測原理及資料處理等進行探討,並由模擬孔洞試驗建立定性的判釋準則發現,掃瞄雷達影像剖面之繞射雙曲線必定落在孔洞外側,其孔洞位置將與雙曲線頂點相互對應,且孔洞大小會與雙曲線之正焦弦長成正比,使用上述兩項特性發展一種數值迴歸分析方法建立不同覆土深、孔徑與雙曲線正焦弦間的三維關係後,即可由工地掃瞄的雷達影像繞射雙曲線直接量化評估孔洞的直徑和回填體積,該法經現場測試孔徑誤差 ,案例探討預估孔徑誤差 ,實際驗證結果確可提供養護工程維修設計及施工執行的參考。

      另外為了進一步因應水利建造物整體資料管理作業的需要,本研究延續一套整合性的地理資訊系統(GIS),先將研究範圍內之環境現況、行政區域與水系等資料數位化建成圖層,再配合全球衛星定位系統(GPS)進行水利堤防孔洞定位套疊整合,即可將現場透地雷達(GPR)檢測分析處理的情形,建檔鏈結成一套3G(GIS/GPS/GPR)的孔洞資料庫,能隨時提供管理者決策和使用者查詢的參考,並有效提昇全面檢測及維修之效益。

     Hydraulic embankments in Taiwan damage very often due to steep terrain, frail geology and torrent of rain that induced by typhoon. In order to prevent the flood disasters effectively, the problem of how to rapidly and correctly detect the position and depth of the internal holes of hydraulic embankments is the main concern. There are many non-destructive detection methods that can be applied in detecting internal empty holes in the structures. All of those methods have their own advantage, disadvantage and limitation. In order to conform to the efficiency, convenience, serviceability and instantaneity of this study, the ground penetration radar (GPR) method is the most suitable method after the evaluation of applicability and analysis in the investigation of internal empty holes in the hydraulic embankments. Besides, the logging images of soil profile retrieved from the GPR method are easy to understand and distinguish, and the resolution of GPR method is good for describing the details of the internal holes of hydraulic embankments. According to the above reasons, mainly the GPR method is applied in this study.

     This study starts with the electromagnetic field related theory, the detection method and the data processing principle. Based on the GPR test experiments of simulated empty underground holes, the qualitative criteria of discrimination are found and established. The discrimination criteria show that the refraction curve from the GPR logging image is a hyperbolic curve and falls back on the outside of hole. Besides, the depth of the top of the hole is at the hyperbolic curve apex, and the size of the hole is proportional to the latus rectum length. Based on the above characteristics, the relations of the depth of internal empty hole of hydraulic embankment, the diameter of hole and the latus rectum length are established using the regressive analysis method. By the established relation, some examples were used to evaluate the buried pipe depth and diameter and the results show that the error of evaluation of in-situ excavation test is around while this of the buried pipes is about . The evaluation of in-situ excavation test confirms the applicability of the analysis method applied as the references for maintenances of hydraulic infrastructure and for new construction.

     In order to achieve the demands of the data management operations of hydraulic infrastructures, this study adopts a set of integrated geographic information system (GIS). Firstly, the digitized layer information based on the current environment, administrative division and aquatic environment has to be established. Secondly, the global positioning system (GPS) is used to identify the position of empty holes of hydraulic embankments, and mark the position on the integrated GIS system. Finally, the in-situ GPR test results, the integrated GIS system and the GPS system are combined together as a set of 3G (GIS/GPS/GPR) database. This database will be applied as the user query system or the reference for making a strategic decision, and it will bring a great benefit in examination and maintenance of hydraulic embankment.

    提要Ⅰ 誌謝IV 目錄Ⅴ 表目錄Ⅸ 圖目錄X 照片目錄XIII 符號說XIV 第一章 前言 1 1-1 研究動機和目的 1 1-2 研究方法和步驟 2 1-3 論文架構與內容 3 第二章 透地雷達相關理論及回顧 5 2-1 非破壞檢測技術探討 5 2-1-1 透地雷達法 5 2-1-2 跨孔超音波檢測法 6 2-1-3 音波回應法 7 2-1-4 暫態彈性波法 7 2-1-5 敲擊回音法 8 2-1-6 表面波譜法 9 2-1-7 紅外線影像法 9 2-2 孔洞檢測方法比較與評估 10 2-3 透地雷達主要應用範疇回顧 10 2-3-1 地下不明物體調查 11 2-3-2 地下水位及含水量變化偵測 13 2-3-3 地層構造調查 14 2-3-4 混凝土裂縫和道路鋪面調查 16 2-3-5 考古及遺址探測 17 2-3-6 壩體掏空及異常偵測 18 2-3-7 岩體裂隙、岩盤斷層偵測 18 2-3-8 河床、湖底地形測繪 19 2-3-9 隧道工程襯砌檢測 20 2-3-10 樓版鋼筋位置探測 21 2-3-11 其他 22 2-4 透地雷達相關理論探討 23 2-4-1 電磁波基本原理論 23 2-4-2 馬克斯威爾方程式 24 2-4-3 電磁波的介質傳播及波速求法 26 2-4-4 地層介質影響參數及檢測限制 33 2-4-5 透地雷達檢測原理及影像處理 37 第三章 定性模擬試驗與判釋準則之建立 53 3-1 檢測儀器及設備 53 3-2 定性模擬試驗方法與步驟 56 3-2-1 試驗方法 56 3-2-2 參數設定 60 3-2-3 定性模擬試驗步驟 66 3-3 定性模擬試驗結果與討論 70 3-3-1 混凝土版下孔洞模擬試驗 70 3-3-2 單排管狀孔洞模擬試驗 71 3-3-3 雙排管狀孔洞模擬試驗 72 3-3-4 孔洞是否有水模擬試驗 73 3-4 案例分析暨判釋準則建立 8 3-4-1 檢測地點 84 3-4-2 檢測結果 84 3-4-3 分析與討論 84 第四章 定量模擬試驗成果分析與評估 92 4-1 定量模擬試驗方法與步驟 92 4-2 定量模擬試驗結果與分析 93 4-2-1 定量模擬試驗結果 93 4-2-2 孔洞大小的分析 98 4-2-3 現場測試與討論 108 4-3 案例探討與評估 110 4-4 迴歸分析及結果討論 113 第五章 孔洞資料庫之建立 117 5-1 資料庫架構及內容 117 5-1-1 資料庫架構 117 5-1-2 資料庫內容 119 5-2 基礎理論說明 120 5-2-1 GIS理論 121 5-2-2 GPS定位原理 122 5-2-3 GIS/GPS系統整合 126 5-3 資料庫設計與建置 128 5-3-1 系統環境說明 128 5-3-2 統一資料格式 129 5-3-3 資料庫建置 130 5-4 系統執行與測試 131 5-4-1 功能模組說明 131 5-4-2 系統執行資料管理 140 5-4-3 系統測試 140 第六章 結論與建議 143 6-1 結論 143 6-2 建議 145 參考文獻 146 附錄 雙曲線參數式與替代式之轉換分析 163

    1.于瑞佐,「以彈性波偵測體內空洞之研究」,國立臺灣大學應用力學研究所碩士論文 (1991)。
    2.王惠濂,「探地雷達目的體物理模擬研究結果」,地球科學-中國地質大學學報,第18卷,第3期,第266-284頁 (1993)。
    3.王思堯,「透地雷達法於土木工程檢測之應用」,國立中央大學應用地質研究所碩士論文 (1997)。
    4.王耀德,「透地雷達在工程上之應用及其影像資料處理管理系統之建立」,國立成功大學土木工程研究所碩士論文 (1999)。
    5.王瑞民,「地理資訊系統」,高立圖書有限公司 (2001)。
    6.安守中,「GPS全球衛星定位系統入門」,全華科技圖書股份有限公司 (2002)。
    7.李永勳編譯,電磁學,第二版,愛迪生維斯理朗文及偉明圖書有限公司合作出版 (1996)。
    8.李桂潨,「透地雷達在土木工程應用上之初步研究」,國立成功大學土木工程研究所碩士論文 (1996)。
    9.李焜發、宣大衡、巫國華,「透地雷達解析技術,探採研究彙報」,第22期,第319-340頁 (1999)。
    10.李德河、林宏明、羅經書、王耀德,「透地雷達應用於並排管線與地下孔洞之探測」,第八屆大地工程學術研究討論會論文集,第2257-2270頁 (1999)。
    11.李吉龍,「高科技園區環境微震監測系統之程式發展」,國立成功大學土木研究所碩士論文 (2001)。
    12.李錫堤、黃慈銘、廖啟雯、陳宏仁,「地下地質資料庫系統的建置與應用-以台北盆地為例」,地工技術,第89期,第13-26頁 (2002)。
    13.施議傑,「透地雷達試驗結果判釋之初步研究」,國立成功大學土木研究所碩士論文 (2002)。
    14.吳政忠、劉佩玲、王俊揚、童建樺,「混凝土強度非破壞檢測法」,第一屆(1999)公共工程非破壞檢測技術研討會論文集,第29-47頁 (1999)。
    15.吳皇旗,「GPS/GIS/RS於高雄捷運系統大寮主機廠基礎地層潛在災害特性之分析研究」,國立屏東科技大學土木工程研究所碩士論文 (2000)。
    16.吳明儒,「透地雷達於污染及廢棄物之檢測應用」,國立中央大學應用地質所碩士論文 (2001)。
    17.邱景升、周宜強,「地理資訊系統入門與應用—MapInfo」,松崗電腦圖書公司 (1995)。
    18.邱君豪,「應用透地雷達探測地下埋設物及地層構造物之研究」,國立成功大學土木工程研究所碩士論文 (1997)。
    19.邱景升、周宜強,「MapInfo實務4.X」,松崗電腦圖書公司 (1997)。
    20.邱義宏,「透地雷達於管線調查之應用」,國立中央大學地球物理研究所碩士論文 (1998)。
    21.林宜清,「敲擊回音法之新近發展與應用」,營建工程非破壞檢測,第229-176頁 (1997)。
    22.林啟斌,「地電阻影像法應用於湖底及斷層測勘」,國立中央大學地球物理研究所碩士論文 (1998)。
    23.林宏明,「透地雷達應用於地下孔洞調查之研究」,國立成功大學土木工程研究所碩士論文 (2000)。
    24.林昆賢,「GPS/GIS應用於南橫公路邊坡地工環境災害調查分析與資料庫系統之建立研究」,國立屏東科技大學土木工程研究所碩士論文 (2001)。
    25.林明寬,「透地雷達在地下掩埋物探測之應用」,國立成功大學土木工程研究所碩士論文 (2001)。
    26.林宏泰,「透地雷達應用於遺址探測及堤防掏空之研究」,國立成功大學土木研究所碩士論文 (2003)。
    27.周志國,「透地雷達法於地下水調查之研究」,國立中央大學應用地質研究所碩士論文 (1993)。
    28.周天穎、葉美玲,「地理資訊系統理論與實務」,逢甲大學地理資訊系統研究中心,第3-2~12-50頁 (2000)。
    29.周武坤,「GPS/GIS科技應用於高雄都會區地下管線工程管理資料庫系統之建立與應用」,國立屏東科技大學土木工程研究所碩士論文 (2002)。
    30.周天穎,「地理資訊系統理論與實務」,儒林圖書有限公司 (2003)。
    31.施保旭,「地理資訊系統」,儒林圖書公司 (1995)。
    32.祈明松,「地質雷達在隧道內的探測」,地球科學—中國地質大學報,第18卷,第3期,第352-357頁 (1993)。
    33.柯文凱,「透地雷達於剛性鋪面檢測之應用」,國立中央大學地球物理研究所碩士論文 (2001)。
    34.紀昭銘,「應用透地雷達法在土中異物探測之初步研究」,國立成功大學土木研究所碩士論文 (2001)。
    35.洪翊翔,「透地雷達及地電阻法於淺層構造調查之研究」,國立中央大學應用地質研究所碩士論文 (1994)。
    36.許朝景,「透地雷達於大地環境調查之應用」,國立成功大學土木工程研究所碩士論文 (2000)。
    37.許程翔,「透地雷達對地下管線探查之應用研究」,國立成功大學土木研究所碩士論文 (2003)。
    38.陳鵬先,「透地雷達應用於淺地層調查之研究」,國立中央大學應用地質研究所碩士論文 (1993)。
    39.陳兆年,「應用透地雷達技術於土木工程結構物之非破壞性檢測」,國立中央大學地質研究所碩士論文 (1996)。
    40.陳進陽,「GPS/GIS應用高雄地區坡地地下環境災害分析之調查研究」,國立屏東科技大學土木工程研究所碩士論文 (1999)。
    41.陳信龍,「步進式高頻地質雷達於道路檢測之模擬與研究」,國立雲林科技大學營建工程研究所碩士論文 (2000)。
    42.陳柏仁,「混凝土內部孔洞顯像之數值研究」,國立臺灣大學應用力學研究所碩士論文 (2000)。
    43.陳玩養,「混凝土內部缺陷掃瞄影像之研究」,國立臺灣大學應用力學研究所碩士論文 (2001)。
    44.陳維力,「透地雷達影像辨識系統及其在斷層測勘上的應用」,國立中正大學地震研究所碩士論文 (2002)。
    45.陳祥穎,「應用後處理程式改善透地雷達訊號特性之探討」,國立雲林科技大學營建工程研究所碩士論文 (2000)。
    46.倪紹仲,「Access資料庫管理與應用」,高立圖書有限公司 (1998)。
    47.倪勝火、林宏明、陳敬寬,「透地雷達應用於堤身中空檢測之研究」,檢測科技,第18卷,第3期,第84-92頁 (2000)。
    48.倪勝火、陳敬寬、林宏明,「透地雷達法於檢測土木結構物淘空之應用」,土木技術,第34期,第82-95頁 (2000)。
    49.倪勝火,「非破壞性提身中空調查技術之研究報告」,經濟部水利處水利規劃試驗所 (2001)。
    50.涂書芳,「以遙控探測方法探討公路邊坡穩定的重要因子—以南橫公路甲仙至啞口段為例」,國立成功大學資源工程研究所碩士論文 (2001)。
    51.高慧菊,「三維透地雷達探勘於考古學之應用—埔里地區」,國立中正大學地球物理研究所碩士論文 (1997)。
    52.財團法人中興工程顧問社,「南化水庫與高屏溪攔河堰聯通管路計畫地理資訊查詢及管理系統之建置」,經濟部水利署南部水資源局 (2005)。
    53.張家瑞,「建立台灣地區瀝青路面網級養護管理系統—以公路局中壢工務段為例」,國立中央大學土木研究所博士論文 (2001)。
    54.張森德,「透地雷達應用在液化及震陷區之模擬試驗研究」,國立雲林科技大學營建工程研究所碩士論文 (2002)。
    55.張君仰,「透地雷達於古蹟探測之應用」,國立成功大學土木研究所 碩士論文 (2004)。
    56.黃天福、梁昇,「應用穿地雷達技術偵測地中埋設管線」,中華水土保持學報,第24卷,第2期,第15-21頁 (1993)。
    57.黃兆龍,「由超音波評估混凝土品質」,第一屆(1999)公共工程非破壞檢測技術研討會論文集,第48-67頁 (1999)。
    58.黃國興,「GPS/GIS與電子地圖之結合應用」,第19屆測量學術及應用研討會論文集,第445-453頁 (2000)。
    59.黃天福,「應用透地雷達探測水底淤泥電磁特性之研究」,國立中興大學水土保持研究所博士論文 (2001)。
    60.國立屏東技術學院土木工程技術系,建立導水隧道結構體安全性檢測作業制度之先驅性研究 (1996)。
    61.逢甲大學地理資訊系統研究中心,「地理資訊系統剖析」,松崗電腦圖書公司 (2000)。
    62.梁昇,「穿地雷達回波的原理及其應用於地下水水位之偵測」,農林學報,第39卷,第2期,第201-219頁 (1990)。
    63.曾清涼、余致義、何慶雄、劉啟清、楊名,「GPS衛星定位測量實務」,國立成功大學衛星資訊研究中心 (1997)。
    64.曾清涼、儲慶美,「GPS衛星測量原理與應用」,國立成功大學衛星資訊研究中心,第二版 (1999)。
    65.曾俊智,「步進式地質雷達應用於孔洞偵測之分析與研究」,國立雲林科技大學營建工程研究所碩士論文 (2000)。
    66.楊潔豪、廖國彰,「透地雷達探測與應用」,地質,第14卷,第2期,第115 -118頁 (1994)。
    67.楊潔豪、陳兆年、王仲宇、林銘朗,「透地雷達探測技術與其在土木工程上之非破壞檢測應用」,檢測科技,第15卷,第3期,第109 -119頁 (1997)。
    68.楊潔豪,「透地雷達在工程上之應用」,工程科技通訊,第40卷,第65-68頁 (1999)。
    69.楊潔豪、董倫道,「透地雷達探測技術」,第一屆(1999)公共工程非破壞檢測技術研討會論文集,第125-165頁 (1999)。
    70.楊潔豪、董倫道,「透地雷達探測技術」,第一屆(1999)公共工程非破壞檢測技術研討會論文集,第125-165頁 (1999)。
    71.楊潔豪、王仲宇、葛其民,「透地雷達在柔性舖面檢測上之應用」,檢測科技,第18卷,第3-4期,第44-53頁 (2000a)。
    72.楊潔豪、王仲宇、陳兆年、王思堯、葛其民,「透地雷達在混凝土結構體檢測上之應用」,土木技術,第34卷,第72-81頁 (2000b)。
    73.楊潔豪,「透地雷達法在混凝土結構體檢測上的應用」,土木技術,第3卷,第12期,第72-81頁 (2000)。
    74.楊潔豪,「透地雷達法在土木檢測上的應用」,地工技術,第86期,第51-62頁 (2001)。
    75.楊明璟,「應用透地雷達於隧道開挖面前方地質探查之初步研究」,國立台灣科技大學營建工程研究所碩士論文 (2002)。
    76.董倫道,「地球物理新技術在大地工程之應用」,地工技術,第69期,第55-64頁 (1998)。
    77.葛其民,「透地雷達於鋪面之應用」,國立中央大學應用地質研究所碩士論文 (1999)。
    78.鄭守東,「應用透地雷達偵測地下管線現地施工程序及注意事項」,現代營建,第20卷,第1期,第37-40頁 (1999)。
    79.鄭富書、蔡道賜,「隧道安全檢測」,第一屆(1999)公共工程非破壞檢測檢測技術研討會論文集,第229-276頁 (1999)。
    80.鄧景龍,「透地雷達於土木構件檢測之應用」,國立中央大學應用地質研究所碩士論文 (1999)。
    81.廖國彰,「透地雷達應用於淺地層之個案分析」,國立中央大學地球物理研究所碩士論文 (1993)。
    82.劉育松,「透地雷達於裂隙檢測上之應用」,國立中央大學應用地質研究所碩士論文 (1998)。
    83.劉大魁,「GPR與熱影像技術於大地工程應用研究」,國立成功大學土木研究所碩士論文 (2002)。
    84.蔡光榮、宋益明、王弘祐、林金柄,「GIS/GPS科技應用於新中橫公路賀伯颱風之災害調查分析」,地工技術,第57期,第55-64頁 (1997)。
    85.廖國彰,「透地雷達應用於淺地層之個案分析」,國立中央大學地球物理研究所碩士論文 (1993)。
    86.謝正倫,「台灣地區土石流資料庫之建置與應用」,集水區土砂災害防治與資料庫技術應用推廣研討會論文集,第77-92頁 (2000)。
    87.謝正倫,「台灣地區土石流資料庫之建置與應用」,集水區土砂災害防治與資料庫技術應用推廣研討會論文集,第77-92頁 (2000)。
    88.羅經書,「透地雷達應用於管線與地層調查之研究」,國立成功大學土木工程研究所碩士論文 (1998)。
    89.Abkowitz, M., Walsh, S., Hauser, E., and Minor, L., “Adoption of geographic information systems to highway management,” Journal of Transportation Engineering, ASCE, Vol. 116, No. 3, pp. 310-327 (1990).
    90.Abrahamson, S., “Development of a ground penetrating radar system for object detection and classification,” Geological Survey of Finland, Special Paper 16, pp. 65-69 (1992).
    91.Alvin, K. B., “Applications of ground penetrating radar in assessing some geological hazards: examples of groundwater contamination, faults, cavities,” Journal of Applied Geophysics, Vol. 33, No. 1-3, pp. 177-193 (1995).
    92.Antenucci, J. C., Geographical Information System, A Guide to the Technology, 3rd ed., Van Nostrand Reinhold, pp. 84-108 (1991).
    93.Annan, A. P. and Chua, L. T., “Ground penetrating radar performance predictions,” Geological Survey of Canada, paper 90-4, pp. 5-13 (1992).
    94.Attoh-Okine, B. N. O., “Using pentrating radar as an integral part of the formulation of maintenance decisions concerning flexibly pavement,” Proceeding of the fifth International Conference on Ground Penetrating Radar, Kitchener, Ontario, Canada, pp. 293-304 (1994).
    95.Bae, S. H., Kim, H. S., and Yoon, W. S., “Case studies on the application of ground penetrating radar technology in detection of underground utilities and structure safety diagnosis,” Proceeding of the Sixth International Conference on Ground Penetrating Radar, pp. 467-472 (1996).
    96.Basile, V., Carrozzo, M. T., Negri, S., Nuzzo, L., Quarta, T., and Villani, A. V., “A ground-penetrating radar survey for archaeological investigations in an urban area (Lecce, Italy),” Journal of Applied Geophysics, Vol. 44, pp. 15-32 (2000).
    97.Benson, A. K., “Case studies using ground penetrating radar to help assess groundwater contamination, shallow faulting, faults, and cavities,” Proceeding of the 29th Symposium on Engineering Geology and Geotechnical Engineering, Idaho State University, Rena, NV, pp. 63-89 (1993).
    98.Benson, A. K., “Application of ground penetrating radar in assessing some geological hazards: examples of groundwater contamination, faults, cavities,” Journal of Applied Physics, Vol. 33, No. 1-3, pp. 177-194 (1995).
    99.Beres, M. J. and Haeni, E. P., “Application of ground-penetrating-radar methods in hydrogeologic studies,” Ground Water, Vol. 29, No. 3, pp. 375-386 (1991).
    100.Beres, M., Luetscher, M., and Olivier, R., “Integration of ground-penetrating radar and microgravimetric methods to map shallow caves,” Journal of Applied Geophysics, Vol. 46, pp. 249-262 (2001).
    101.Bernhardsen, T., Geographical information system, an introduction, 2 nd ed., John and Sons, Inc., pp. 1-168 (1999).
    102.Bevan, B. W., “The search for graves,” Geophysics, Vol. 56, pp. 1310-1319 (1991).
    103.Cardarelli, E., Marrone, C., and Orlando, L., “Evaluation of tunnel stability using integrated geophysical methods,” Journal of Applied Geophysics, Vol. 52, pp. 93-102 (2003).
    104.Carlsten, S., “Radar techniques for indicating internal erosion in embankment dams,” Journal of Applied Geophysics, Vol. 33, pp. 143-156 (1995).
    105.Chen, H. W., and Kao, H. C., “GPR archaeological investigation in central Taiwan,” Proceedings of the Eighth International Conference on Ground Penetrating Radar (GPR 2000), the University of Queensland, Australia (2000).
    106.Collins, M. E., “Soil taxonomy: a useful for the application of ground penetrating radar,” Geological Survey of Finland, Special Paper 16, pp. 125-132 (1992).
    107.Cook, J. C., “Proposed monocycle-pulse VHF radar for airborne ice and snow measurements,” AIEE Transpotation Communication and Electron ,No. 79, pp. 588-594 (1960).
    108.Cook, J. C., “Preface,” Journal of Applied Geophysics, Vol. 33, pp. 1-3 (1995).
    109.Cooley, J. W. and Tukey, J. W., “An algorithm for machine calculation of complex fourier series,” Mathematics Computation, Vol. 19, pp. 297-301 (1965).
    110.Davis, J. L., and Annan, A. P., “Ground penetrating radar for high resolution mapping of soil and rock stratigraphy,” Geophysical Prospecting, Vol. 37, pp. 531-551 (1989).
    111.Daniels, J. J., “Ground penetrating radar for geo-technical applications,” Geophysical Characterization of Sites, Volume Prepared by ISSMFE, TC#10, pp. 1-13 (1994).
    112.Daniels, J. J., “Ground penetrating radar for the detection of liquid contaminants,” Journal of Applied Geophysics, Vol. 33, No. 1-3, pp. 195-208 (1995).
    113.Daniels, K. J., Gunton, D. J., and Scott, H. F., (Guest Editors), “Special issue on subsurface radar,” IEEE Proceedings F-135, pp. 277-392 (1988).
    114.Delaney, A. J., and Arcone, S. A., “Sub-bottom profiling: a comparison of short-pulse radar and acoustic data,” Geological Survey of Finland, Special Paper 16, pp. 149-157 (1992).
    115.Dominic, D. F., “Delineation of shallow stratigraphy using ground-penetrating radar,” Journal of Applied Geophysics, Vol. 33, No 1-3, pp. 167-176 (1995).
    116.Doolittle, J. A., and Collins, M. E., “Use of soil information to determine application of ground penetrating radar,” Journal of Applied Geophysics, Vol. 33, pp. 101-108 (1995).
    117.Garlsten, S., “Radar techniques for indicating internal erosion in embankment dams,” Journal of Applied Geophysics, Vol. 33, pp. 143-156 (1995).
    118.Geophysical Survey Systems Inc., Training Notes, May (1992).
    119.Gorin, S. R., and Hanei, F. R., “Use of subsurface-geophysical methods to access riverbed scour at bridge piers,” US Geological Survey, Water-Resources Investigation Report 88-42123, 32p. (1989).
    120.Gracia, V. P., Canas, J. A., Pujades, L. G., Clapes, J., Caselles, O., Garcia, F., and Osorio, R., “ GPR survey to confirm the location of ancient structures under the Valencian Cathedral (spain),” Journal of Applied Geophysics, Vol. 43, pp. 167-174 (2000).
    121.Grandjean, G., Gouvrry, J. C., and Bitri, A., “Evaluation of GPR techniques for civil-engineering applications: study on a test site,” Journal of Applied Geophysics, vol. 45, pp. 141-156 (2000).
    122.Grandjean, G., and Goury, C., “GPR data processing for 3D facture mapping in a marble quarry (Thassos, Greece),” Journal of Applied Geophysics, Vol. 36, pp. 19-30 (1996).
    123.Grodner, M., “Delineation of rockburst fractures with ground penetrating radar in the Witwatersrand Basin, South Africa,” International Journal of Rock Mechanics and Mining Sciences, Vol. 38, pp. 885-891 (2001).
    124.Hanninen, P., “Application of ground penetrating radar techniques to peatlands investigations,” Geological Survey of Finland, Special Paper 16, pp. 217-221 (1992).
    125.Hayakawa, H., and kawanaka, A., “Radar imaging of underground pipes by automated estimation of velocity distribution versus depth,” Journal of Applied Geophysics, Vol. 40, pp. 37-48 (1998).
    126.Herman H., “Robotic subsurface mapping using ground penetrating radar,” Ph. D. Dissertation, Department of Robotics Institute, University of Carnegie-Mellon, Pittsburgh, Pennsylvania, USA, (1997).
    127.Heteren, S. V., Fitzgerald, D. M., Mckixlay, P. A., and Buynevich, I. V., “Radar facies of paraglacial barrier system coastal New England, USA,” Sedimentology, Vol. 45, pp. 181-200 (1998).
    128.Hideki, H., and Akira, K., “Radar imaging of underground pipes by automated estimation of velocity distribution versus depth,” Journal of Applied Geophysics, Vol. 40, No. 1-3, pp. 37-48 (1998).
    129.Hunaidi, O., and Giamou, P., “Ground penetrating radar for detection leaks in buried plastic water distribution,” Proceedings of the Seventh International Conference On Ground Penetrating Radar(GPR’98), Lawrence, Kansas, USA, pp. 27-30 (1998).
    130.Imai, T., Sakayama, T., and Kanemori T., “Use of ground-probing radar and resistivity surveys for archaeological investigations,” Geophysics, Vol. 52, pp. 137-150 (1987).
    131.Interpex Limited, User’s manual for Gradix:ground penetration radar processing and interpretation, Vol. 1, Golden, Colorado, (1997).
    132.James, A. D., and Mary, E. C., “Use of soil information to determine application of ground penetrating radar,” Journal of Applied Geophysics, Vol. 33, pp. 101-108 (1995).
    133.Jol, H. M., and Smith, D. G., “Ground penetrating radar of Northern Lacustrine Delta,” Canada Journal of Earth Science, Vol. 28, pp. 1939-1947 (1991).
    134.Jol, H. M., “Ground penetrating radar antenna frequencies and transmitter powers compared for penetration depth, resolution and resolution continuity,” Geophysical Prospecting, Vol. 43, pp. 171-178 (1995).
    135.Karastathis, V. K., Karmis, P. N., Drakatos, G., and Stavrakakis, G., “Geophysical methods contributing to the testing of concrete dams: application at the Marathon Dam,” Journal of Applied Geophysics, Vol. 50, pp. 247-260 (2002).
    136.Kovas, J. E., “Survey application of ground-penetrating radar,” Surveying and Land Information Systems, Vol. 51, No. 3, pp. 144-148 (1991).
    137.Lau, C. L., “Using ground penetrating radar technology for pavement evaluations in Texas, USA,” Geological Survey of Finland, Special Paper 16, pp. 277-283 (1992).
    138.Maekawa, S., and Fenner, T. J., “Study of cavity depth estimation behind concrete tunnel lining using G.P.R.,” Proceeding of the Fifth International Conference of G.P.R. Waterloo Center for Ground Research, Waterloo, Ont., pp. 895-905 (1994).
    139.MALA Geosience, RAMAC/Ground Vision software manual, Version 3.0, Sweden (2003).
    140.MALA Geosience, RAMAC/GPR Operating Manual, Version 3.0, Sweden (1999).
    141.Markt, G., “Subsurface characterization of hazardous waste sites using ground pentrating radar,” Proceedings of Second International Symposium on Geotechnical Applications of Ground-Penetrating Radar, Gainesville, Florida, USA, pp. 61-110 (1988).
    142.Maser, K. R., “Highway speed radar for pavement and bridge deck evaluation,” Geological Survey of Finland, Special Paper 16, pp. 267-276 (1992).
    143.Maser, K. R., “Highway speed radar for pavement thickness evaluation,” Proceedings of the Fifth International Conference on Ground Penetrating Radar, Kitchener, Ontario, Canada, pp. 423-432 (1994).
    144.McMechan, G. A. Gaynor, G. C., and Szerbiak, R. B., “Use of Ground-penetrating radar for 3-D sedimentological characterization of clastic reservoir analogs,” Geophysics, Vol. 62, pp. 786-796 (1997).
    145.Meade, M. L., and Dillon, C. R., Signals and Systems, Chapman and Hall, London (1991).
    146.Mellett, J. S., “Location of human remains with ground-penetration radar,” Geological Survey of Finland, Special Paper 16, pp. 359-365 (1992).
    147.Mellett, J. S., “Ground penetrating radar applications in engineering, environmental management, and geology,” Journal of Applied Geophysics, Vol. 33, pp. 157-166 (1995).
    148.Milan, B. J., and Haeni, F. P., “Application of ground penetrating radar methods in hydrogeologic studies,” Ground Water, Vol. 29, No. 3, pp. 144-148 (1991).
    149.Pagnoni, T., “An automated radar system for non destructive testing of bridge and highway pavements,” Proceeding of the Sixth International Conference on Ground Penetrating Radar, pp. 359-364 (1996).
    150.Parry, N. S., and Davis, J. L., “GPR Systems for roads and bridges,” Geological Survey of Finland, Special Paper 16, pp. 247-257 (1992).
    151.Rizos, C., “Principles and Practice of GPS surveging,” School of Geomatic Engineering, The University of New South Wales, Sydney NSW, Australia (1996).
    152.Saarenketo, T., and Scullion, T., “Road evaluation with ground penetrating radar,” Journal of Applied Geophysics, Vol. 43, pp. 119-138 (2000).
    153.Sangree, J. B., and Widmier, J. M., “Interpretation of depositional facies from seismic data,” Geophysics, Vol. 44, No. 2, pp. 131-160 (1979).
    154.Scott, W. R., and Smith, G. S., “Measured electrical constitutive parameters of soil as function of frequency and moisture constant,” IEEE Transaction, Geoscience and Remote Sensing, Vol. 30, No. 3, pp. 621-623 (1992).
    155.Shih, S. F., and Doolittle, J. A., “Using radar to investigate organic thickness in the florida everglades,” Soil Science Society of America Journal, Vol. 48, No. 3, pp. 651-656 (1984).
    156.Silver, M. L., Fisk, P. S., and Greenman, A., “Grouting a sand dam,” Civil engineering-ASCE, Vol. 56, No. 12, pp. 34-36 (1986).
    157.Sternberg, B. K., and McGill, J. W., “Archaeology studies in southern arizona using ground penetrating radar,” Journal of Applied Geophysics, Vol. 33, pp. 209-225 (1995).
    158.Stolte, C., and Niok, K. P., “Eccentricity-migration: a method to improve the imaging of pipes in radar reflection data,” Proceedings of the Fifth International Conference on Ground Penetrating Radar(GPR’94), Kitchener, Ont., Canada, pp. 723-799 (1994).
    159.Sutinen, R., “GPR and dielectric classification of glacial materials,” Geological Survey of Finland, Special Paper 16, pp. 103-110 (1992).
    160.Theimer, B. D., Nobes, D. C., and Warner, B. G., “A study of the geoelectrical properties of peatlands and their influence on ground-penetrating radar surveying,” Geophysical Prospecting, Vol. 42, pp. 179-209 (1994).
    161.Tillard, S., and Dubois, J. C., “Analysis of GPR data:wave propagation velocity determination,” Journal of Applied Geophysics, Vol. 33, pp. 77-91 (1995).
    162.Tohge, M., Karube, F., Kobayashi, F., Janakai, A., and Ishii, K., “TheU use of Ground-penetrating radar to map an ancient village buried by vocanic eruptions,” Journal of Applied Geophysics, Vol. 40, pp. 49-58 (1998).
    163.Toshioka, T., Tsuchida, T., and Sasahara, K., “Application of GPR to detection and mapping cracks in rock slopes,” Journal of Applied Geophysics,Vol. 33, pp. 119-124 (1995).
    164.Tong, L. T., “Application of ground penetrating radar to locate underground pipes,” Terrestrial, Atmospheric and Oceanic Sciences, Vol. 4, No. 2, pp. 171-178 (1993).
    165.Topp, G. C., Davis, J. L., and Annan, A. P., “Electro-magnetic determination of soil water content: measurement in coexial transmission lines,” Water Resources, Res. 16, pp. 574-586 (1980).
    166.Toshioka, T., Tsuchida, T., and Sasahara, K., “Applications of GPR to detecting and mapping cracks in rock slopes,” Journal of Applied Geophysics, Vol. 33, pp. 119-124 (1995).
    167.Ulriksen, C. P., “Application of impulse radar to civil engineering,” Ph.D. Thesis, Dept of Eng. Geol., Lund Univ. of Tech., Sweden, 175p. (1982).
    168.Vaughan, C. J., “Ground penetrating radar surveys used in archaeological investigations,” Geophysics, Vol. 51, pp. 595-604 (1986).
    169.Weil, G. J., “Non-destructive testing of bridge, highway and airport pavements,” Geological Survey of Finland, Special Paper 16, pp. 259-266 (1992).
    170.Zeng, X., Mcmechan, G. A., Cai, J., and Chen, H. W., “Comparison of ray and Fourier methods for modeling monostatic ground-penetrating radar profiles,” Geophysics, Vol. 60, pp. 1727-1734 (1995).
    171.Zeng, X., and Mcmechan G. A., “ GPR characterization of buried tanks and pipes,” Geophysics, Vol. 62, No. 3, pp. 797-806 (1997).
    172.Zhang, R., “The development of substructure impulse imaging radar and its application,” Geological Survey of Finland, Special Paper 16, pp. 149-157 (1992).
    173.Zolotarey, V. P., Grigorieff, K. N., and Glotov, V. P., “Detection of cavities in dolomite and profiling of alluvial deposits using GPR in Lithuania,” Proceeding of the Sixth International Conference on Ground Penetrating Radar, pp. 445-453 (1996).

    下載圖示 校內:2006-07-22公開
    校外:2006-07-22公開
    QR CODE