簡易檢索 / 詳目顯示

研究生: 林銘哲
Lin, Ming-Je
論文名稱: 適用於資料取樣線性奇異系統的創新型二次式觀測器與軌跡追蹤器設計法則
Novel Design Methodologies for Quadratic Observers and Trackers of Sampled-Data Linear Singular Systems
指導教授: 蔡聖鴻
Tsai, Sheng-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 70
中文關鍵詞: 直接傳輸項觀測器奇異系統數位再設計軌跡追蹤器
外文關鍵詞: direct transmission term, tracker, singular system, digital redesign, observer
相關次數: 點閱:122下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出針對於資料取樣線性奇異系統的創新型二次式觀測器與軌跡追蹤器的設計法則。首先,利用一些方法把奇異系統轉換成一個對等含有直接傳輸項的系統,再以等效的系統來架構一個高增益的類比二次式軌跡追蹤器,然後利用數位重新設計法則以得到一個低增益且實用的數位軌跡追蹤器,除了數位再設計的方法外,本論文亦提出以直接離散性能指標法來建立軌跡追蹤器的方法,當含有輸入直接傳輸項之連續時間系統的狀態沒辦法有效的被估測時,一個創新型的類比觀測器與對應的數位觀測器在本文中被提出,最後,我們提出數個例子,來說明我們所提出方法的可行性。

    This thesis develops novel design methodologies for quadratic observers and trackers of sampled-data linear singular system. At first, some techniques have been utilized to decompose the singular system into an equivalent regular system with a direct transmission term from input to output. Then, a high-gain optimal linear quadratic analogue tracker is proposed based on the equivalent regular system with a direct transmission term from input to output. Subsequently, the prediction-based digital redesign method is utilized to obtain a relatively low-gain and practicably implemental digital tracker. Here, this thesis also derives a method called an alternative digital redesign approach. That this thesis directly discretizes the linear quadratic performance index specified in the continuous-time domain into an equivalent discrete-time performance index for the equivalent regular system with a direct transmission term from input to output. When the state of the continuous-time system with a direct transmission term is not available for measurement, the novel suboptimal analog and its corresponding digital observers are developed for the continuous time and sampled-data linear singular systems, respectively. Several illustrative examples are presented to demonstrate the effectiveness of the proposed design methodology.

    中文摘要                        I Abstract                        II Acknowledgments                   III List of Contents                    IV List of Figures                    VI Chapter 1 Introduction               1-1 2 The Decomposition of Singular System      2-1 2.1 Preliminaries for Decomposition of Singular Systems 2-1 2.2 The Regular Pencil and the Standard Pencil 2-2 2.3 Decomposition of Singular Systems 2-3 3 A Novel Quadratic Suboptimal Tracker and Observer for the Sampled-Data Linear Singular System 3-1 3.1 Optimal Linear Quadratic Analogue Tracker for Singular Systems 3-1 3.2 Prediction-Based Linear Quadratic Digital Tracker for Singular Systems 3-5 3.3 A Novel Prediction-Based Digital Observer 3-7 3.4 Illustrative Examples 3.4.1 Example 3.1 3-11 3.4.2 Example 3.2 3-19 4 An Alternative Digital Redesign for the Singular System 4.1 A Novel Tracker for the Singular System 4-1 4.2 Illustrative Examples 4.2.1 Example 4.1 4-8 4.2.2 Example 4.2 4-14 5 Conclusion 5-1 References R-1 Appendix A-1

    [1] H. J. Wang, A. K. Xue, Y. F. Guo, and R. Q. Lu, “Input-output approach to robust stability and stabilization for uncertain singular systems with time-varying discrete and distributed delays,” Journal of Zhejiang University-Science A, vol. 9, no. 4, pp. 546-551, 2008.
    [2] J. S. H. Tsai, C. T. Wang, and L. S. Shieh, “Model conversion and digital redesign of singular systems,” Journal of Franklin Institute, vol. 330, pp. 1063-1086, 1993.
    [3] B. G. Mertzios, M. A. Christodoulou, B. L. Syrmos, and F. L. Lewis, “ Direct controllability and observability time domain conditions of singular systems, ” IEEE Transactions Automatic Control, vol. 33, no. 8, pp. 788-7 91, August 1988.
    [4] C. J. Wang and H. E. Liao, “Impulse observability and impulse controllability of linear
    time-varying singular systems,” Automatica, vol. 37, pp. 1867-1872, 2001.
    [5] S. M. Guo, L. S. Shieh, G. Chen, and C. F. Lin, “ Effective chaotic orbit tracker a prediction based digital redesign approach, ” IEEE Transaction on Circuits and System-I , Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557-1570, 2000.
    [6] J. D. Roberts, “Linear model reduction and solution of the algebraic Riccati equation by use of the sign function,” International Journal Control, vol. 32, pp. 677-687, 1980.
    [7] H. J. Lee, J. B. Park, and Y. H. Joo, “An efficient observer-based sampled-data control: digital redesign approach,” IEEE Transaction Circuits and Systems-I, Fundamental Theory and Applications, vol. 50, no. 12, 2003.
    [8] L. S. Shieh, Y. T. Tsay, and R. E. Yates, “Some properties of matrix-sign functions derived from continued fractions,” IEE Proceedings Part D, vol. 130, no. 3, pp. 111-118, 1983.
    [9] J. S. H. Tsai, L. S. Shieh, and R. E. Yates, “Fast and stable algorithms for computing the principal nth root of a complex matrix and the matrix-sector function,” International Journal of Computers and Mathematics with Applications, vol. 15, no. 11, pp. 903-913, 1988.
    [10] F. R. Ganmacher, The theory of matrices II, Chelsea, New York, 1974.
    [11] R. Nikoukhah, A. S. Willsky, and B. C. Levy, “Boundary-value descriptor systems:well-posedness, reachability and observability,” International Journal of Control, vol. 46, no. 5, pp.1715-1737, 1987.
    [12] S. L. Campbell, Singular systems of differential equations II, Pitman, New York, 1982.
    [13] L. S. Shieh, Y. T. Tsay, and C. T. Wang, “Matrix sector functions and their applications to system theory,” IEE Proceeding D-Control Theory and Application, vol. 131, pp. 171-181, 1984.

    下載圖示 校內:2011-07-01公開
    校外:2012-07-01公開
    QR CODE