| 研究生: |
林璟謙 Lin, Jing-Cian |
|---|---|
| 論文名稱: |
著重於資料維持和寫入錯誤問題之高可靠度具溫度感知的電阻式隨機存取記憶體控制器設計 Design of a Temperature-Aware Highly Reliable Resistive Random Access Memory Controller on Data Retention and Write Error Issues |
| 指導教授: |
邱瀝毅
Chiou, Lih-Yih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 電阻式隨機存取記憶體 、記憶體控制器 、溫度感知 、錯誤校正碼 、資料維持錯誤 |
| 外文關鍵詞: | Resistive random access memory, Memory controller, Temperature-aware, Error correcting code, Data retention error |
| 相關次數: | 點閱:81 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在日益普遍的可攜式電子產品中非揮發性記憶體是一個重要元件,而傳統的非揮發性記憶體與揮發性記憶體相比有較長存取時間與較高寫入電壓。近年來,許多新興非揮發性記憶體設計被提出,電阻式記憶體(ReRAM)是其中非常具有發展性的新興非揮發性記憶體。擁有比傳統非揮發性記憶體高的存取速度與較低的寫入電壓。但電阻式記憶體在可靠度方面仍然有寫入錯誤與高溫下資料維持錯誤的問題。本論文提出一高可靠度具溫度感知的記憶體控制器,其中提出溫度感知的操作模式隨溫度去做電阻式記憶體操作模式的調整,來降低資料維持錯誤的影響。和同時考量寫入錯誤與資料維持錯誤的自適性的寫入機制,針對每筆寫入資料做適合的錯誤校正碼選擇和寫入條件的調整。透過以上兩種機制達到電阻式記憶體在可靠度方面的提升。
Resistive random access memory (ReRAM) is a one of emerging non-volatility memories. Main advantages of ReRAM are low power, high speed, simple structure, and compatible with CMOS process. However, the ReRAM has reliability issues due to resistance instability at high temperature and failure during transition. The resistances of ReRAM cells drift toward intermediate state at high temperature. During write operation, some write failure errors occur because some ReRAM cells cannot change their resistances successfully. This thesis proposed a temperature-aware memory controller to deal with data retention errors and write failure errors.
The proposed temperature-aware memory controller uses a temperature-aware operation scheme and an adaptive write scheme to improve the reliability of ReRAM. The temperature-aware operation scheme adjusts the ReRAM operation setting according to temperature for reducing resistance instability at the high temperature. On the other hand, the adaptive write scheme considers write-failure and data retention issues simultaneously to improve ReRAM reliability. As a result, the adaptive write scheme improves the bit-error rate (BER) of ReRAM by 96.6%. Additionally, temperature-aware operation scheme reduces the BER of ReRAM by 72.2% at 125°C. The proposed temperature-aware controller reduces the BER of ReRAM by 88.2% at 125°C.
[1] P.-F. Chiu, M.-F. Chang, C.-W. Wu, C.-H.Chuang, S.-S. Sheu, and Y.-S. Chen, and M.-J. Tsai, "Low Store Energy, Low VDDmin, 8T2R Nonvolatile Latch and SRAM With Vertical-Stacked Resistive Memory (Memristor) Devices for Low Power Mobile Applications,” IEEE J. Solid-State Circuits, vol. 47, pp. 1483-1496, 2012.
[2] S.-S. Sheu, M.-F. Chang, K.-F. Lin, C.-W. Wu, P.-F. Chiu, Y.-S. Chen, P.-F. Chiu, C.-C. Kuo, Y.-S. Yang, P.-C. Chiang, W.-P. Lin, C.-H. Lin, H.-Y. Lee, P.-Y. Gu, S.-M. Wang, Frederick T. Chen, K.-L. Su, C.-H. Lien, K.-H. Cheng, H.-T. Wu, T.-K. Ku, M.-J. Kao, and M.-J. Tsai, "A 4Mb embedded SLC resistive-RAM macro with 7.2ns read-write random-access time and 160ns MLC-access capability," in Proc. International Solid-State Circuits Conference (ISSCC), pp. 200-202, 2011.
[3] Y.-C. Chen, L. Hai, Z. Wei, and R. E. Pino, "3D-HIM: A 3D High-density Interleaved Memory for bipolar RRAM design," in Proc. IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), pp. 59-64, 2011.
[4] S. Yu, H.-Y. Chen, D. Yexin, B. Gao, J. Zizhen, K. Jinfeng, and Wong, H.-S.P., "3D vertical RRAM - Scaling limit analysis and demonstration of 3D array operation," in Proc. Symposium on VLSI Technology (VLSIT), pp. T158-T159, 2013.
[5] M.-C. Hsieh, Y.-C. Liao, Y.-W. Chin, C.-H. Lien, T.-S. Chang, Y.-D. Chih, Natarajan, S., M.-J. Tsai, Y.-C. King, and C. J. Lin, "Ultra high density 3D via RRAM in pure 28nm CMOS process," in Proc. International Electron Devices Meeting (IEDM), pp. 10.3.1-10.3.4, 2013.
[6] I. Kazi, P. Meinerzhagen, P. E. Gaillardon, D. Sacchetto, A. Burg, and G. De Micheli, "A ReRAM-based non-volatile flip-flop with sub-VT read and CMOS voltage-compatible write," in Proc. International New Circuits and Systems Conference (NEWCAS), pp. 1-4, 2013.
[7] S. Onkaraiah, M. Reyboz, F. Clermidy, J. Portal, M. Bocquet, C. Muller, H.Hraziia, C. Anghel, and A. Amara, "Bipolar ReRAM Based non-volatile flip-flops for low-power architectures," in Proc. International New Circuits and Systems Conference (NEWCAS), pp. 417-420, 2012.
[8] S.-S. Sheu, C.-C. Kuo, M.-F. Chang, P.-L. Tseng, C.-S. Lin, M.-C. Wang, C.-H. Lin, W.-P. Lin, T.-K. Chien, S.-H. Lee, S.-C. Liu, H.-Y. Lee, P.-S. Chen, Y.-S. Chen, C.-C. Hsu, Chen, F.T., K.-L. Su, T.-K. Ku, M.-J. Tsai, and M.-J. Kao, "A ReRAM integrated 7T2R non-volatile SRAM for normally-off computing application," in Proc. Asian Solid-State Circuits Conference (A-SSCC), pp. 245-248, 2013.
[9] O. Turkyilmaz, S. Onkaraiah, M. Reyboz, F. Clermidy, C. A. Hraziia, J. Portal, M. Bocquet, "RRAM-based FPGA for “normally off, instantly on” applications," in Proc. International Symposium on Nanoscale Architectures (NANOARCH) , pp. 101-108, 2012.
[10] S. Tanakamaru, M. Doi, and K. Takeuchi, "NAND Flash Memory/ReRAM Hybrid Unified Solid-State-Storage Architecture," in Trans. on Circuits and Systems I: Regular Papers, vol. 61, pp. 1119-1132, 2014.
[11] S. Tanakamaru, H. Yamazawa, T. Tokutomi, N. Sheyang, and K. Takeuchi, "19.6 Hybrid storage of ReRAM/TLC NAND Flash with RAID-5/6 for cloud data centers," in Proc. International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 336-337 , 2014.
[12] S.-S. Sheu, K.-H. Cheng, M.-F. Chang, P.-. Chiang, W.-P. Lin, H.-Y. Lee, P.-S. Chen, Y.-S. Chen, T.-Y. Wu, Chen, F.T., K.-L. Su, M.-J. Kao, and M.-J. Tsai, "Fast-Write Resistive RAM (RERAM) for Embedded Applications," in Trans. Design & Test of Computers, vol. 28, pp. 64-71, 2011.
[13] M.-F. Chang and S.-J. Shen, "A Process Variation Tolerant Embedded Split-Gate Flash Memory Using Pre-Stable Current Sensing Scheme," IEEE J. Solid-State Circuits, vol. 44, pp. 987-994, 2009.
[14] T. Kawahara et al., ‘‘2 Mb SPRAM (SPin-Transfer Torque RAM) with Bit-by-Bit Bi-directional Current Write and Parallelizing-Direction Current Read,’’ IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 109-120, 2008.
[15] R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y. M. Lee, R. Sasaki, Y. Goto, K. Ito, T. Meguro, F. Matsukura, H. Takahashi, H. Matsuoka, and H. Ohno, ‘‘A 32-Mb SPRAM with 2T1R Memory Cell, Localized Bi-directional Write Driver and ‘1’/‘0’ Dual-Array Equalized Reference Scheme,’’ IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 869-879, 2010.
[16] Chuan-Sheng Lin, Kuang-Yuan Chen, Yu-Hsian Wang, and Lan-Rong Dung, "A NAND Flash Memory Controller for SD/MMC Flash Memory Card," in Proc. International Conference on Electronics, Circuits and Systems, pp. 1284-1287, 2006.
[17] L. Wei, R. Junrye, and S. Wonyong, "Low-Power High-Throughput BCH Error Correction VLSI Design for Multi-Level Cell NAND Flash Memories," in Proc. IEEE Workshop on Signal Processing Systems Design and Implementation, pp. 303-308, 2006.
[18] J. Freudenberger and J. Spinner, "Mixed serial/parallel hardware implementation of the Berlekamp-Massey algorithm for BCH decoding in Flash controller applications," in Proc. International Symposium on Signals, Systems, and Electronics (ISSSE), pp. 1-5, 2012.
[19] L. Kijun, L. Sejin, and K. Jaehong, "Low-cost, low-power and high-throughput BCH decoder for NAND Flash Memory," in Proc. International Symposium on Circuits and Systems (ISCAS), pp. 413-415, 2012.
[20] R. Micheloni, A. Marelli, and R. Ravasio, Error Correction Codes for Non-Volatile Memories. Berlin, Germany: Springer-Verlag, 2008.
[21] Y. Chen and K. K. Parhi, "Area efficient parallel decoder architecture for long BCH codes," in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing. (ICASSP '04), vol.5, pp. V-73-6, 2004
[22] S. Tanakamaru, C. Hung, and K. Takeuchi, "Highly Reliable and Low Power SSD Using Asymmetric Coding and Stripe Bitline-Pattern Elimination Programming," IEEE J. Solid-State Circuits, vol. 47, pp. 85-96, 2012.
[23] S. Tanakamaru, H. Yamazawa, T. Tokutomi, N. Sheyang, and K. Takeuchi, "19.6 Hybrid storage of ReRAM/TLC NAND Flash with RAID-5/6 for cloud data centers," in Proc. International Solid-State Circuits Conference (ISSCC), pp. 336-337, 2014.
[24] A. Junwhan, Y. Sungjoo, and C. Kiyoung, "Selectively protecting error-correcting code for area-efficient and reliable STT-RAM caches," in Proc. Design Automation Conference (ASP-DAC), pp. 285-290, 2013.
[25] J. Yongsoo, N. Dimin, D. Xiangyu, S. Guangyu, C. Naehyuck, and X. Yuan, "Energy- and endurance-aware design of phase change memory caches," in Proc. Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 136-141, 2010.
[26] 李亨元 , “高溫系統環境建立報告”, ITRI, Research Report 51-3-A2-0123-01, 2013
校內:2019-09-11公開