簡易檢索 / 詳目顯示

研究生: 鄭博壕
Cheng, Po-Hao
論文名稱: 一個應用於生醫植入式系統之高能量效率2.4 GHz ISM頻段開關位移鍵收發機
A 2.4GHz ISM Band OOK Transceiver with High Energy Efficiency for Biomedical Implantable Applications
指導教授: 李順裕
Lee, Shuenn-Yuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 84
中文關鍵詞: 收發機開關位移鍵能量效率
外文關鍵詞: transceiver, on-off keying, energy efficiency
相關次數: 點閱:107下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種應用於2.4 GHz ISM頻段之高能量效率,高整合度,低功耗開關位移鍵收發機。本論文所提出的接收機包含了匹配網路、低雜訊放大器、單端轉雙端封包檢測器、位準轉移器、基頻放大器與遲滯比較器。2.45 GHz之射頻訊號經由匹配網路進入,經由低雜訊放大器放大射頻訊號,被封包檢測器解調成基頻訊號,接著透過基頻放大器進行解調訊號之放大,最後比較器將基頻訊號拉開至1或0。另外,發射機包含了偏壓刺激電路、電流再利用自混頻壓控振盪器與四倍轉導值功率放大器。偏壓刺激電路透過數位邏輯閘將數位基頻訊號重新定義使得下級之壓控振盪器加速振盪,最後經由功率放大器將射頻調變訊號送至天線端。以上電路所使用到的數個本論文所提出的技術可以改善能量效率與功率效率。因此,本論文所提出的接收機在2.45 GHz頻率短距離傳輸中可以達到靈敏度-46 dBm和資料速率2 Mbps。另外發射機可在資料傳輸為20 Mbps時達到輸出能量-17 dBm。
    本論文所提出之收發機使用標準TSMC 0.18μm 1P6M製程,量測方法則是將裸晶透過打鎊線封裝於PCB板子上。由量測結果可得知,在操作電壓為1.2伏特之下,接收機與發射機分別消耗160微瓦與0.6毫瓦。除此之外,接收機80 pJ/bit的能量效率與發射機9的功能值在跟現今最新進的收發機比較下是較好的。

    This thesis presents a high energy efficiency, high-integrated, and low-power on-off keying transceiver for a 2.4 GHz industrial scientific medical band. The proposed receiver includes an input matching network, a low-noise amplifier, a novel single-to-differential envelope detector, a level shifter, cascaded baseband amplifiers, and a hysteresis comparator. The transmitter includes a bias-stimulating circuit, a current-reused self-mixing voltage controlled oscillator, and a quadruple-transconductance power amplifier. Numerous proposed techniques implemented in the mentioned circuits ameliorate the energy efficiency and power efficiency. Therefore, the receiver for short-distanced propagation can achieve a sensitivity of−46 dBm with a carrier frequency of 2.45 GHz and a data rate of 2 Mbps. The transmitter achieves an output power of −17 dBm with a data rate of 20 Mbps.
    The transceiver implemented in TSMC 0.18 um 1P6M CMOS technology. The measurement results reveals that the proposed transceiver consumes 160 uW and 0.6 mW in the receiver and transmitter, respectively, from a 1.2-V supply voltage. Moreover, the energy per bit of 80 pJ/bit in the receiver part and the figure of merit of 9 in the transmitter part are lower than those achieved with existing state-of-the-art transceivers.

    摘要 I Abstract II 誌謝 III Contents IV List of Tables VI List of Figures VII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Wireless Networking Standards 3 1.3 Thesis Organization 5 Chapter 2 Transceiver Architectures 6 2.1 Receiver Architectures 6 2.1.1 Heterodyne Receivers 6 2.1.2 Direct-Conversion Receivers 10 2.1.3 Low-IF Receivers 12 2.1.4 Super-Regenerative Receivers 14 2.2 Transmitter Architectures 16 2.2.1 Direct-Conversion Transmitters 16 2.2.2 Heterodyne Transmitters 18 2.2.3 PLL-Based Transmitters 19 2.3 OOK Transceiver 21 Chapter 3 RF Metric System 22 3.1 Noise 22 3.1.1 Thermal Noise 22 3.1.2 Flicker Noise 24 3.2 Noise Figure 25 3.3 Passive Impedance Transformation 27 3.4 Feedback View of Oscillators 29 3.5 Digital Modulation 30 3.6 Performance Consideration 31 Chapter 4 Design and Implementation of Proposed OOK Receiver 34 4.1 Architecture and Operation 34 4.2 Circuitry Implementation 35 4.2.1 Low-Noise Amplifier 35 4.2.2 Single-to-Differential Envelope Detector 38 4.2.3 Level Shifter 42 4.2.4 Baseband Amplifier 43 4.2.5 Hysteresis Comparator 44 4.3 Simulation Result 46 Chapter 5 Design and Implementation of Proposed OOK Transmitter 51 5.1 Architecture and Operation 51 5.2 Circuitry Implementation 52 5.2.1 Bias-Stimulating Circuit 52 5.2.2 Current-Reused Self-Mixing Voltage-Controlled Oscillator 55 5.2.3 Quadruple-Transconductance Power Amplifier 59 5.3 Simulation Results 62 Chapter 6 Measurement Results 67 6.1 Measurement Setup 67 6.2 Measurement Results and Comparison Tables of Proposed OOK Transceiver 69 Chapter 7 Conclusion and Future Work 77 References 78 Recommendations and Responses 81

    [1] S. Y. Lee, C. Tsou, P. W. Huang, P. H. Cheng, C. C. Liao, Z. X. Liao, H. Y. Lee, C. C. Lin and C. H. Hsieh, "A Programmable Wireless EEG Monitoring SoC with Open/Closed-Loop Optogenetic and Electrical Stimulation for Epilepsy Control," ISSCC Dig. Tech. Papers, Feb. 2019, pp. 372–374.
    [2] E. H. Armstrong, “Some recent developments of regenerative circuits,” IRE, vol. 10, no. 4, pp. 244–260, Aug. 1922.
    [3] B. van Liempd, et al., "A 3µW fully-differential RF envelope detector for ultra-low power receivers," in Proc. IEEE International Symposium on Circuits and Systems, May. 2012, pp. 1496–1499.
    [4] L.-C. Liu, M.-H. Ho, and C.-Y. Wu, "A medradio-band low-energy-per-bit CMOS OOK transceiver for implantable medical devices," in Proc. IEEE Biomedical Circuits and Systems Conference (BioCAS), Nov. 2011, pp. 153–156.
    [5] S. Nanda, A. S. Panda and G. L. K. Moganti, "A novel design of a high speed hysteresis-based comparator in 90-nm CMOS technology," in Proc. IEEE International Conference on Information Processing (ICIP), Dec. 2015, pp. 388–391.
    [6] C. F. Tsou, "A Low-Power, Low-Energy-Per-Bit, High-Integrated OOK Receiver and a Low-Power OOK Transmitter with Energy-Per-Bit-Improved Technique," Master thesis, 2017.
    [7] X. Huang, P. Harpe, X. Wang, G. Dolmans, and H.D Groot, "A 0dBm 10Mbps 2.4GHz ultra-low power ASK/OOK transmitter with digital pulse-shaping," in Proc. IEEE Radio Frequency Integrated Circuits Symposium (RFIC), May. 2010, pp. 23–25
    [8] R.Hamdi, A.Desmarais, A.Belarbi, D.Deslandes, F.Nabki "A programmable OOK impulse radio ultra wideband transmitter with power cycling and spectral agility," in Proc. IEEE International Symposium on Circuits and Systems(ISCAS), May 2012, pp.2541–2544.
    [9] Hsieh-Hung Hsieh and Liang-Hung Lu, "A low-phase-noise K-band CMOS VCO," in IEEE Microwave and Wireless Components Letters, vol. 16, no. 10, pp. 552–554, Oct. 2006.
    [10] Information technology—Radio frequency identification for item management, ISO/IEC 18000 Part 4, International Standards Organization, 2004.
    [11] V. Dabbagh Rezaei and K. Entesari, "A Fully On-Chip 80-pJ/b OOK Super-Regenerative Receiver With Sensitivity-Data Rate Tradeoff Capability," in IEEE Journal of Solid-State Circuits, vol. 53, no. 5, pp. 1443–1456, May 2018.
    [12] L. Jae-Seung, K. Joo-Myoung, L. Jae-Sup, H. Seok-Kyun and L. Sang-Gug, "A 227pJ/b −83dBm 2.4GHz multi-channel OOK receiver adopting receiver-based FLL," ISSCC Digest of Technical Papers, Feb. 2015, pp. 1–3.
    [13] B. Zhao, Y. Sun, W. Zou, Y. Lian, Y. Liu and H. Yang, "An energy efficient fully integrated OOK transceiver SoC for wireless body area networks," in Proc. IEEE Asian Solid-State Circuits Conference (A-SSCC), Nov. 2013, pp. 441–444.
    [14] D. C. Daly and A. P. Chandrakasan, "An Energy-Efficient OOK Transceiver for Wireless Sensor Networks," in IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1003–1011, May. 2007.
    [15] Y. Zhang, R. Zhou, W. Rhee and Z. Wang, "A 1.9-mW 750-kb/s 2.4-GHz F-OOK Transmitter With Symmetric FM Template and High-Point Modulation PLL," in IEEE Journal of Solid-State Circuits, vol. 52, no. 10, pp. 2627–2635, Oct. 2017.
    [16] P. P. Mercier, S. Bandyopadhyay, A. C. Lysaght, K. M. Stankovic and A. P. Chandrakasan, "A Sub-nW 2.4 GHz Transmitter for Low Data-Rate Sensing Applications," in IEEE Journal of Solid-State Circuits, vol. 49, no. 7, pp. 1463–1474, July. 2014.
    [17] M. Vidojkovic et al., "A 2.4GHz ULP OOK single-chip transceiver for healthcare applications," ISSCC Dig. Tech. Papers, Feb. 2011, pp. 458–460.
    [18] B. Razavi, RF Microelectronics, 2nd ed., Prentice Hall PTR, 2011.
    [19] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed., Cambridge university press, 2004.
    [20] B. Razavi, "Design of Analog CMOS Integrated Circuits," McGraw-Hill, 2003.
    [21] Prof. K.-W. Cheng, Lecture Notes, Dept. of EE, NCKU

    下載圖示 校內:2024-06-20公開
    校外:2024-06-20公開
    QR CODE