簡易檢索 / 詳目顯示

研究生: 徐丞伯
Shu, Cheng-Bo
論文名稱: 以矽酸鉿之相分離特性作為金氧半結構氧化層之光響應研究
Photoresponse of Phase Separated Hafnium Silicate in Metal-Oxide-Semiconductor Structure
指導教授: 施權峰
Shih, Chuan-Feng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 97
中文關鍵詞: 矽酸鉿光響應相分離光偵測器
外文關鍵詞: Hf Silicate, MIS, photodetector, photoresponse, Phase separation
相關次數: 點閱:88下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨為將矽酸鉿材料作為MIS 結構氧化層並研究其光電流響應。矽酸鉿氧化層在高溫熱處理後會產生相分離現象,形成二氧化鉿奈米微晶分佈在氧化層裡。研究中利用共同濺鍍的方式沉積矽酸鉿氧化層,製成金氧半(Al/Hf Silicate/Si)結構,並調變不同的氧化層厚度及退火溫度來探討矽酸鉿的結晶、相分離特性以及其光響應特性。
    實驗中探討不同的氧化層厚度及退火溫度對元件光響應的影響,900 ℃以下的退火,光響應電流及暗電流皆會隨著厚度增加而減少;而經1100 ℃退火後,厚度越厚可觀察到越大的光響應電流以及較低的暗電流,因此有高的亮暗電流比,此外觀察到明顯的電流遲滯現象。從TEM 圖中觀察,發現相分離的現象會受到半導體表面應力的影響,遠離半導體表面之氧化層有越明顯的相分離及結晶區域,致使越厚的氧化層表面形成高密度的奈米結晶結構,可能因此成為電流遲滯與高光響應電流的主因。

    In this paper, the objective of the hafnium silicate material as a MIS structure of oxide layer and to study their photoresponse. Hafnium silicate oxide layer after heat treatment at high temperature will produce the phenomenon of phase separation, the formation of hafnium dioxide in the nano-crystals oxide layer. Research on the use of co-sputter deposition of hafnium silicate oxide layer, made of semi-metal-oxide (Al / Hf Silicate / Si) structure, and modulation of different oxide thickness and annealing temperature to explore the crystallization of hafnium silicate, phase separation characteristics as well as their optical response characteristics.
    Experiments to explore different oxide thickness and annealing temperature of components in response to the effects of light, 900 ℃ annealing below, photo current and dark current will decrease with the increase in thickness; and by 1100 ℃ annealing, the thickness can be thicker observed that the greater the photoresponse and lower dark current, it is a high dark to current ratio, and the obvious observation of hysteresis current. From the TEM morphology, found that the phenomenon of phase separation would be the impact of semiconductor surface stress, away from the interface between semiconductor and oxide layer of the more obvious phase separation and crystallization of the region, resulting in a thicker oxide layer formed on the surface of the high-density nano-crystalline structure, may become sluggish and the current response to high light the main current.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 序論 1 1-1 前言 1 1-2 實驗目的 2 1-3 論文架構 2 第二章 理論基礎 4 2-1 MIS基礎理論 4 2-1-1 MIS結構理論基礎 4 2-1-2 MIS結構的缺陷型態及其影響 6 2-1-3 缺陷對平帶電壓造成的影響 8 2-1-4 電容器的理論計算 8 2-2 光偵測器原理 10 2-2-1 MIS光偵測器 11 2-2-2 量子效率(Quantum Efficiency) 12 2-2-3 光響應度(Responsivity) 12 2-3 暗電流傳輸機制 13 2-3-1 直接穿隧 (direct tunneling) 13 2-3-2 傅勒讣諾得翰穿隧 (Fowler讣Nordheim tunneling) 14 2-3-3 蕭基發射 (Schottky emission) 15 2-3-4 普爾讣法蘭克發射 (Poole讣Frenkel emission) 16 2-4 高介電材料矽酸鉿氧化層特性 17 2-4-1 矽酸鉿材料特性 17 2-4-2 相分離機制 18 2-4-3 解離分解 19 第三章 實驗方法 34 3-1 MIS光偵測器製作 34 3-1-1 矽基板之準備 34 3-1-2 矽基板表面清洗 34 3-1-3 氧化層製備流程 36 3-1-4 氧化層之退火 36 3-1-5 電極製備及電極後退火 37 3-2 氧化層材料與元件特性之量測分析 38 3-2-1 I-V及C-V特性量測 38 3-2-2 光電流響應及變溫電流量測 38 3-2-3 掃描式電子顯微鏡(SEM) 39 3-2-4 穿透式電子顯微鏡(TEM) 39 3-2-5 X光光電子能譜儀(HRXPS) 40 3-2-6 X光繞射儀(XRD) 40 第四章 結果與討論 47 4-1 參數測定及條件較佳化 47 4-1-1 氧化層厚度量測及成分分析 47 4-1-2 元件光響應比較 48 4-2 不同矽酸鉿氧化層厚度之比較 49 4-2-1 光電流響應 49 4-2-2 矽酸鉿薄膜晶相特性分析 50 4-2-3 電容相關特性探討 50 4-2-4 變溫電流量測及電流傳導機制 52 4-2-5 載子嵌陷遲滯特性 54 4-2-6 結論 54 4-3 不同矽酸鉿氧化層退火溫度之比較 55 4-3-1 光電流響應 55 4-3-2 矽酸鉿薄膜晶相特性分析 56 4-3-3 電容相關特性探討 57 4-3-4 變溫電流量測及電流傳輸機制 58 4-3-5 載子嵌陷遲滯特性 59 4-3-6 結論 59 4-4 不同矽酸鉿氧化層退火時間之比較 60 4-4-1 光電流響應 60 4-4-2 矽酸鉿薄膜晶相特性分析 61 4-4-3 電容相關特性探討 61 4-4-4 結論 62 第五章 結論與未來規劃 92 5-1 結論 92 5-2 未來規劃 93 參考文獻 94

    [1] J. M. Shieh, Y. F. Lai, and W. X. Ni, “Enhanced photoresponse of a metal-oxide-semiconductor photodetector with silicon nanocrystals embedded in the oxide layer”, Appl. Phys. Lett., vol.90, 051105 (2007).
    [2] Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, J. C. Campbell, “Microstructured silicon photodetector”, Appl. Phys. Lett., vol.89, 033506 (2006).
    [3] P. C. Chang, C. H. Chen, S. J. Chang, Y. K. Su, C. L. Yu, B. R. Huang, P. C. Chen, “High UV/visible rejection contrast AlGaN/GaN MIS photodetectors”, Thin Solid Films, vol.498, 133 (2006).
    [4] P.C. Chang, K.T. Lam, C.H. Chen, S.J. Chang, C.L. Yu and C.H. Liu, “ AlGaN/GaN two-dimensional electron gas metal-insulator-semiconductor photodetectors with sputtered SiO2 layers”, IET Optoelectron., vol.2, 55 (2008).
    [5] S. J. Young, L. W. Ji, S. J. Chang, S. H. Liang, K. T. Lam, T. H. Fang, K. J. Chen, X. L. Du, Q. K. Xue, “ZnO-based MIS photodetectors”, Sensors and Actuators,
    Vol.A141, 225 (2008).
    [6] T. H. Cheng, M. H. Liao, L. Yeh, T. L. Lee, and M. S. Liang C. W. Liu, “Digital communication using Ge metal-insulator-semiconductor light-emitting diodes and photodetectors”, J. Appl. Phys., vol.103, 016103 (2008).
    [7] T. Erlbacher, A.J. Bauer, H. Ryssel, “Hafnium silicate as control oxide in non-volatile memories”, Microelectronic Engineering, vol., 84, 2239 (2007).
    [8] 劉漢文, “固態電子元件” 。
    [9] D. A. Neamen., “Semiconductor physics and devices :basic principles”, Irwin, (1992).
    [10] Dieter K. Schroder, “Semiconductor Material and Device Characterization”, 2rd Edition, John Wiley and Cons, Inc., (1998).
    [11] E. F. Nicollian, and J. R. Brews, “MOS Physics and Technology”, New York, Wiley, (2003).
    [12] S. M. SZE, “Semiconductor Devices Physics and Technology”, 2rd Edition, John Wiley and Cons, Inc., (2002).
    [13] W. S. Ho, C. H. Lin, T. H. Cheng, W. W. Hsu, Y. Y. Cheng, P. S. Kuo, and C. W. Liu, “Narrow-band metal-oxide-semiconductor photodetector”, Appl. Phys. Lett., vol.94, 61114 (2009).
    [14] J. Shewchun, R. Singh, and M. A. Green, “Theory of Metal-Insulator- Semiconductor Solar Cells”, J. Appl. Phys., vol.48, 765 (1977).
    [15] K. C. Lee, J. G. Hwu, “Efficiency improvement in low temperature metaloxide- semiconductor solar cells by thin metal film deposition on photon receiving area” J. Vac. Sci. Technol. Vol.A14, 2641 (1998).
    [16] W. A. Anderson, A. E. Delahoy, and R. A. Milano, “An 8% efficiency layered Schottky barrier solar cell”, J. Appl. Phys., vol.45, 3913 (1974).
    [17] D. L. Pulfrey, “MIS Solar Cells:A Review”, IEEE Transactions on Electron Devices, ED-25, 1308 (1978).
    [18] C. K. Maiti, S. Maikap, S. Chatterjee, S. K. Nandi, and S. K. Samanta, “Hafnium oxide gate dielectric for strained-Si1-xGex”, Solid-State Electronics, vol.47, 1995 (2003).
    [19] N. A. Chowdhury, and D. Misra, “Charge Trapping at Deep States in Hf–Silicate Based High-k Gate Dielectrics”, Journal of The Electrochemical Society, vol.154, G30 (2007).
    [20] J. Robertson, “High dielectric constant oxides”, Eur. Phys. J. Appl. Phys., vol.28, 265 (2004).
    [21] E. Cartier, B. He, E. Gousev, D. A. Buchanan, H. F. Okorn-Schmidt, M. Copel, and M. Gribelyuk, “Proceedings of the Material Research Society”, MRS, San Francisco, Ca, (2000).
    [22] L. Kang, Y. Jeon, K. Onishi, B. H. Lee, W. J. Qi, R. Nieh, S. Gopalan, and J. C. Lee, “2000 Symposium on VLSI Technology”, IEEE Electronic Devices Society, Honolulu, 44, (2000).
    [23] S. Stemmer, Y. Li, B. Foran, P. S. Lysaght, S. K. Streffer, P. Fuoss, and S. Seifert, “Grazing-incidence small angle x-ray scattering studies of phase separation in hafnium silicate films”, Appl. Phys. Lett., vol.83, 3141 (2003).
    [24] P. Lysaght, B. Foran, S. Stemmer, G. Bersuker, J. Bennett, R. Tichy , L. Larson and H. R. Huff, “Thermal response of MOCVD hafnium silicate”, Microelectronic Engineering, vol.69, 182 (2003).
    [25] C. N. R. Rao, K. J. Rao, “Phase Transitions in Solids”, McGraw-Hill, New York, (1978).
    [26] G. W. Cahn, Trans. Met. Soc. AIME, vol.242, 166, (1968).
    [27] J. E. Hilliard, “Phase Transformations”, ASM, pp. 497~560, Chapman & Hall, London, (1970).
    [28] V. A. Chaudhari, and C. S. Solanki, “Study of Different Top Metal Contact Designs for Concentration Solar Cells”, Advances in Energy Research, 250 (2006).
    [29] 汪建民,“材料分析”,中國材料科學學會。
    [30] M. Fernandes, Yu. Vygranenko, R. Schwarz, M. Vieira, C. Nunes Carvalho, “Photocurrent multiplication in ITO/SiOx/Si optical sensors”, Vacuum, vol.65, 67 (2002).
    [31] M. Y. Ho, H. Gong, G. D. Wilk, B. W. Bosch, M. L. Green, “Morphology and crystallization kinetics in HfO2 thin films grown by atomic layer deposition”, J. Appl. Phys., vol.93, 1477 (2003).
    [32] H. Kim, and P. C. McIntyre, “Spinodal decomposition in amorphous metal– silicate thin films : Phase diagram analysis and interface effects on kinetics”, J. Appl. Phys., vol.92, 5094 (2002).
    [33] S. M. Hossain, A. Anopchenko, S. Prezioso, L. Ferraioli, L. Pavesi, G. Pucker, P. Bellutti, S. Binetti, and M. Acciarri, “Subband gap photoresponse of nanocrystalline silicon in a metal-oxidesemiconductor device”, J. Appl. Phys., vol.104, 074917 (2008).
    [34] A. Callegari, E. Cartier, M. Gribelyuk, H. F. Okorn-Schmidt, and T. Zabel, “Physical and electrical characterization of Hafnium oxide and Hafnium silicate sputtered films”, J. Appl. Phys., vol.90, 6466 (2001).
    [35] N. V. Nguyen, A. V. Davydov, D. C. Horowitz, M. M. Frank, “Sub-bandgap defect states in polycrystalline hafnium oxide and their suppression by admixture of silicon”, Appl. Phys. Lett., vol.87, 192903 (2005).
    [36] M. H. Cho, K. B. Chung, C. N. Whang, D. W. Lee and D. H. Ko, “Phase separation and electronic structure of Hf-silicate film as a function of composition”, Appl. Phys. Lett., vol.87, 242906 (2005).
    [37] A. J. Nozik, “Quantum Structured Solar Cells”, Nanostructured Materials for Solar Energy Conversion, 485, (2006).

    下載圖示 校內:2012-07-30公開
    校外:2014-07-30公開
    QR CODE