簡易檢索 / 詳目顯示

研究生: 黃文育
Huang, Wen_Yu
論文名稱: 具漏感能量回收之新型錯相返馳式電源轉換器
Novel Interleaved Flyback Converters with Leakage Energy Recycling
指導教授: 梁從主
Liang, Tsorng-Juu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 78
中文關鍵詞: 返馳式轉換器錯相返馳式
外文關鍵詞: Flyback, Interleaved controlled
相關次數: 點閱:124下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一新型錯相返馳式轉換器架構,此電路結合雙開關返馳式轉換器與傳統錯相返馳式轉換器之優點,以提高輸出功率與轉換效率。本架構係利用二個電容器串接,且分別並聯一組基本返馳式轉換器,於電路中加入箝位二極體可直接回收漏電感能量,並箝位切換開關之電壓,藉以提高轉換器效率。本文中將對常見之返馳式電路架構作簡介,並針對所提出之電路架構作特性分析。最後,研製一雙級式電源轉換器,藉以驗證理論分析之正確性。本電源轉換器之輸入交流電壓為90V ~ 264 V,輸出為直流電壓24 V,輸出功率為480 W。

    In this thesis, a novel interleaved flyback converter combines the advantages of the two-switch flyback converter and the interleaved controlled technique. Thus, the output power can be increased and also the system efficiency is improved. There are two series capacitors in the front of input, and each capacitor is parallel with a basic flyback converter. Additionally, clamp diodes are employed to clamp the voltage stress on switches, and also recycle the energy stored in leakage inductors through clamp diodes. Several flyback topologies are introduced, and characteristic analysis of the proposed converter is discussed. Finally, a two-stage power converter is implemented to verify the theory, the specifications of the two-stage power converter are as follows: The input voltage is from 90 VAC to 264 VAC, the output voltage is 24 V and the output power is 480 W.

    目 錄 摘 要 I Abstract II 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 3 1.3 論文架構簡介 5 第二章 功因修正電路與返馳式電源轉換器簡介 6 2.1 功因修正電路 7 2.1.1 主動功因修正電路架構 8 2.1.2 功因修正控制簡介 9 2.2 返馳式電源轉換器架構介紹 12 2.2.1 返馳式轉換器工作原理 12 2.2.2 吸收電壓突波之緩振電路 15 2.2.3 準諧振(Quasi-resonant)返馳式轉換器 18 2.2.4 雙開關(Two-switches) 返馳式轉換器 19 2.2.5 主動箝位(Active clamp)返馳式轉換器 21 2.2.6 錯相(Interleaved)返馳式轉換器 22 第三章 具漏感能量回收之新型錯相返馳式電源轉換器 24 3.1 新型錯相返馳式轉換器之模式分析 25 3.1.1 主電路架構簡介 25 3.1.2 電路動作模式分析 26 3.2 新型錯相返馳式轉換器之特性分析 39 3.2.1 穩態之電壓轉換比 39 3.2.2 新型錯相返馳式轉換器之操作限制 41 3.2.3 轉換器之最大責任週期 43 3.2.4 轉換器之輸出濾波電容 44 3.2.5 元件損耗分析 46 第四章 電路設計與實驗結果分析 50 4.1 電源轉換器系統規格 50 4.2 功率因數修正電路之元件參數設計 52 4.2.1 儲能電感LPFC設計 52 4.2.2 功因修正電路之輸出電容C1 與 C2設計 53 4.3 新型錯相返馳式轉換器之元件參數設計 54 4.3.1 磁化電感Lm之參數設計: 54 4.3.2 儲能變壓器之參數設計: 55 4.3.3 輸出濾波電容CO設計: 56 4.4 雛型電路元件參數 58 4.5 實作波形量測與電路特性探討 61 4.5.1 功因修正電路實測波形分析與討論 61 4.5.2 錯相返馳式轉換器實驗波形分析與討論 65 4.5.3 電源轉換器系統效率分析與討論 72 第五章 結論與未來研究方向 74 5.1 結論 74 5.2 未來研究方向 75 參考文獻 76 表 目 錄 表1.1(a) 交流電壓115 VAC之80 Plus系統規範 3 表1.1(b) 交流電壓230 VAC之80 Plus系統規範 3 表4.1 系統之電氣規格表 51 表4.2 電源轉換器相關元件之規格表 59 表4.3 零件規格參數 60 圖 目 錄 圖2.1 電源轉換器系統架構圖 6 圖2.2 橋式整流電路與波形圖 7 圖2.3升壓型功因修正電路架構與波形圖 9 圖2.4 峰值電流控制模式之波形圖 10 圖2.5 磁滯電流控制模式之波形圖 11 圖2.6 平均電流控制模式之波形圖 11 圖2.7理想返馳式電源轉換器 12 圖2.8(a) 理想返馳式連續導通模式相關波形 13 圖2.8(b) 理想返馳式不連續導通模式相關波形 13 圖2.9考慮漏電感之返馳式電源轉換器與開關電壓波形 15 圖2.10具RCD緩振器之返馳式電源轉換器 16 圖2.11具無損失LC緩振器之返馳式電源轉換器 17 圖2.12具能量再生緩振器之返馳式電源轉換器 17 圖2.13(a) 準諧振返馳式電源轉換器 19 圖2.13(b) 準諧振返馳式轉換器相關波形 19 圖2.14雙開關返馳式轉換器 20 圖2.15主動箝位返馳式轉換器 22 圖2.16錯相式返馳式轉換器 23 圖3.1具漏感能量回收之新型錯相返馳式電源轉換器 25 圖3.2具漏感能量回收之錯相返馳式轉換器主要波形圖 27 圖3.3模式I之電流路徑圖 29 圖3.4模式Ⅱ之電流路徑圖 30 圖3.5模式Ⅲ之電流路徑圖 32 圖3.6模式Ⅳ之電流路徑圖 33 圖3.7模式Ⅴ之電流路徑圖 34 圖3.8模式Ⅵ之電流路徑圖 35 圖3.9模式Ⅶ之電流路徑圖 37 圖3.10模式Ⅷ之電流路徑圖 38 圖3.11本轉換器之簡化電路 40 圖3.12 下,開關截止之之電流路徑圖 41 圖3.13新型錯相返馳式與傳統返馳式轉換器之電壓轉換比 44 圖3.14整流二極體與輸出電容之電流波形 45 圖4.1電源供應器之系統架構圖 50 圖4.2電源轉換器之雛型電路 59 圖4.3(a) 530 W下輸入交流電壓90 V之vac與iac波形 62 圖4.3(b) 530 W下輸入交流電壓264 V之vac與iac波形 62 圖4.4(a) 106 W下輸入交流電壓90 V之vac與iac波形 63 圖4.4(b) 106 W下輸入交流電壓264 V之vac與iac波形 63 圖4.5功因修正電路轉換效率曲線圖 64 圖4.6功因修正電路之功率因數曲線圖 64 圖4.7功因修正電路電流總諧波失真曲線圖 65 圖4.8(a) IO = 20 A之開關電流波形iDS1, iDS2 67 圖4.8(b) IO = 20 A之開關電壓波形vDS1, vDS2 67 圖4.8(c) IO = 20 A之箝位二極體電流波形iD1, iD2 68 圖4.8(d) IO = 20 A之整流二極體電流波形iD3, iD4 68 圖4.9(a) IO = 4 A之開關電流波形iDS1, iDS2 69 圖4.9(b) IO = 4 A之開關電壓波形vDS1, vDS2 69 圖4.9(c) IO = 4 A之箝位二極體電流波形iD1, iD2 70 圖4.9(d) IO = 4 A之整流二極體電流波形iD3, iD4 70 圖4.10新型錯相返馳式轉換器之效率圖 71 圖4.11 輸入電壓vac = 115 V之系統效率圖 73 圖4.12 輸入電壓vac = 230 V之系統效率圖 73

    參考文獻
    [1] EPRAC著,「電力電子學綜論」,初版,全華圖書,民國九十三年。
    [2] A. I. Pressman, Switching Power Supply Design, McGraw-Hill Inc., 1998.
    [3] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Kluwer Academic Publishers, 2000.
    [4] Marian. K. Kazimier, Pulse-Width Modulated DC-DC Power Converters, John Wiley & Sons, 2008.
    [5] 張英彬著,「電力電子學」,初版,高立科技圖書,1997。
    [6] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications and Design, Second Edition, John Wiley & Sons, 1995.
    [7] Electromagnetic Compatibility (EMC) — Part3:Limits section II:Limits for harmonic current emissions (Equipment input current 16A per phase), IEC 1000-3-2, 1st ed, 1995.
    [8] 梁適安著,「交換式電源供給器之理論與實務設計」,初版,全華科技圖書,民國八十六年。
    [9] A. R. Prasad, P. D. Ziogas, and S. Manias, “A novel passive waveshaping method for
    single-phase diode rectifiers,” in Proc. IEEE IECON Conf., vol. 2, pp. 1041-1050, 1990.
    [10] Z. Yang and P. C. Sen, “Recent developments in high power factor switch-mode converters,” in Proc. IEEE CCECE Conf., vol. 2, pp. 477-480, 1998.
    [11] Huai Wei and I. Batarseh, “Comparison of basic converter topologies for power factor Correction,” in Proc. IEEE SECON Conf., pp. 348-353, 1998.
    [12] C. Zhou and M. M. Jovanovic, “Design trade-offs in continuous current-mode controlled boost power-factor correction circuits,” International High-Frequency Power Conversion Conf., pp 209-220, 1992.
    [13] P. B. Christophe, Switch-mode power supplies: Spice simulations and practical designs, McGraw-Hill Inc., 2008.
    [14] C. Zhou, R. B. Ridley, and F. C. Lee, “Design and analysis of a hysteretic boost power factor correction circuit,” in Proc. IEEE PESC Conf., pp. 800-807, 1990.

    [15] L. Dixon, “Average current mode control of switching power supplies,” Unitrode application note, U140.
    [16] V. Tarateeraseth, T. Maneenopphon, and W. Khan-ngern, “The comparison of EMI and lectrical performances of high frequency transformer windings for SMPS applications,” in Proc. IEEE PCC Conf., pp. 435-440, 2007.
    [17] A. Hren, J. Korelic, and M. Milanovic, “RC-RCD clamp circuit for ringing losses reduction in a flyback converter,” IEEE Trans. circuit and system II: Express Briefs, vol. 53, pp. 369-373, May 2006.
    [18] K. Harada and H. Sakamoto, “Switched snubber for high frequency switching,” in Proc. IEEE PESC Conf., pp. 181-188, Jun. 1990.
    [19] R. Petkov and L. Hobson, “Optimum design of a nondissipative snubber,” in Proc. IEEE PESC Recor. Conf., vol. 2, pp. 1188-1195, 1994.
    [20] C. Ji, K. M. Smith, and K. M Smedley, “Cross regulation in flyback converters: solutions,” in Proc. IEEE IECON Conf., vol. 1, pp. 174-179, 1999.
    [21] C. S. Liao and K. M. Smedley, “Design of high efficiency flyback converter with energy regenerative snubber,” in Proc. IEEE APEC Conf., pp. 796-800, 2008.
    [22] 艾祖華,“具功因校正及無損耗緩震電路之整合型交/直流轉換器”,國立成功大學電機工程學系博士論文,中華民國九十一年七月。
    [23] K. H. Liu and F. C. Lee, “Zero-voltage switching technique in DC/DC converters,” IEEE Trans. Power Electronics, vol. 5, pp. 293-304, Jul. 1990.
    [24] F. C. Lee, “High-frequency quasi-resonant converter technologies,” IEEE Proc., vol. 76, pp. 377-390, Apr. 1988.
    [25] J. M. Zaza, J. P. Ferrieux, and J. Perard, “A high frequency resonant flyback switching power supply,” in Proc. IET Conf. Power Electronics and Variable-Speed Drives, London, pp.120-124, 1988.
    [26] C. Wang, Z. Wang, and N. Zhang, “Design of two-switch flyback converter with CLC output filter,” in Proc. IEEE IPEMC Conf., pp. 358-361, 2009.
    [27] J. Zhao and F. Dai, “Soft-switching two-switch flyback converter with wide range,” in Proc. IEEE ICIEA Conf., pp. 250-254, 2008.
    [28] R. Watson, F. C. Lee, and G. C. Hua, “Utilization of an active-clamp circuit to achieve soft switching in flyback converters,” IEEE Trans. Power Electronics, vol. 11, pp. 162-169, 1996.

    [29] G. B. Koon and M. J. Youn, “A new zero voltage switching active clamp flyback converter,” in Proc. IEEE PESC Conf., vol. 1, pp.508-510, 2005.
    [30] B. R. Lin, H. K. Chiang, K. C. Chen, and D. Wang, “Analysis, design and implementation of an active clamp flyback converter,” in Proc. IEEE PEDS Conf., vol. 1, pp. 424-429, 2005.
    [31] P. J. Grbovic, “High-voltage auxiliary power supply using series-connected MOSFETs and floating self-driving technique,” IEEE Trans. Industrial Electronics, vol. 56, pp. 1446-1455, May 2009.
    [32] Y. K. Lo and J. Y. Lin, “Active-clamping ZVS flyback converter employing two transformers,” IEEE Trans. Power Electronics, vol. 22, pp. 2416-2423, Nov. 2007.
    [33] C. Chang and M. A. Knights, “Interleaving technique in distributed power conversion systems,” IEEE Trans. circuit and system I: Fundamental Theory and Applications, vol. 42, pp. 245-251, May 1995.
    [34] D. J. Perreault and J. G. Kassakian, “Distributed interleaving of paralleled power converters,” IEEE Trans. Circuit and Systems I: Fundamental Theory and Applications, vol. 44, pp. 728-734, Aug. 1997.
    [35] H. Wang, C. Gong, H. Ma, and Y. Yan, “Research on a novel interleaved flyback DC/DC converter,” in Proc. IEEE ICIEA Conf., pp. 1-5, 2006.
    [36] Y. C. Hsieh, M. R. Chen, and H. L. Cheng, “Zero-voltage-switched interleaved flyback onverter,” in Proc. IEEE Telecommunication Energy Conf., pp. 1-6, 2009.
    [37] W. Li, J. Shi, M. Hu, and X. He, “An isolated interleaved active-clamp ZVT flyback-boost converter with coupled inductors with coupled inductor,” in Proc. IEEE Power Electronic and Applications Conf., pp. 1-9, 2007.
    [38] J. Zhao, H. Zhao, and F. Dai, “A novel ZVS PWM interleaved flyback converter,” in Proc. IEEE ICIEA Conf., pp. 337-341, 2007.
    [39] ICE2PCS02 Datasheet, Infineon Instrument, 2007.
    [40] UC3825 Datasheet, Texas Instrument, 2007.

    下載圖示 校內:2020-10-01公開
    校外:2020-10-01公開
    QR CODE