簡易檢索 / 詳目顯示

研究生: 李易修
Li, Yi-Hsiu
論文名稱: AlGaN/GaN 高電子遷移率電晶體應用於感測器之研究
AlGaN/GaN High Electron Mobility Transistor for Sensor Application
指導教授: 張允崇
Chang, Yun-Chorng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 67
中文關鍵詞: 高電子遷移率電晶體感測器
外文關鍵詞: sensor, HEMT
相關次數: 點閱:66下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中, 主要研究AlGaN/GaN高電子遷移率電晶體無閘極的結構使用於感測器應用,利用改變元件的表面能態導致二維電子氣濃度產生變化,利用此效應來感測不同的酸鹼度,以及在不同環境下元件所反映出來的相關特性,研究中發現,雖然環境中的光源會使元件產生環境雜訊,但是如果固定光源強度,當固定電流情況,照光之下電壓值會下降;進行酸鹼測量,酸鹼值由5至7的過程中,固定電流值為20毫安培測量電壓變化,在酸性環境下電壓值較鹼性來的小,與文獻中實驗相互對照,符合其中理論分析結果,酸鹼值影響是由氫原子主導,使得GaN表面二維電子氣濃度增加,相對電壓值較小,感測能力約27.78mV/pH。
    另一方面,在交流量測部分,利用改變頻率觀察元件感測能力變化,加上鎖向放大器的差動放大的功能,在高頻方波的感測能力表現可以高達約17μV/pH的效果。
    總而言之,製程中的保護層選用聚甲基丙烯酸甲酯這種高分子材料,具有穩定防水且保護電極的效果,利用元件特性在直流以及交流訊號中的特性曲線,加上紫外光對於元件有一定程度的影響條件下,對於開發新的元件結構與提高其感測能力有一定程度的幫助。

    value of a solution under DC and AC biasing condition. For DC biasing condition, the channel resistance is found to decrease with reducing pH value under dark condition. The sensitivity is about 27.78 mV/pH when biasing the device with a constant current of 20 mA. The environmental lighting will induce parasitic effect to the measurement result. The channel resistance is observed to increase with reducing pH value of the solution when illuminated the device with a constant ultraviolet light. The effect of the ultraviolet illumination is also investigated. The pH value is also measured when biasing the device with AC current. Different types of AC signal from a pulse generator with different frequencies are injected into the devices and the signal is detected and analyzed by a lock-in amplifier. The sensitivity of the device is observed to depend on the type of AC signal and the frequency used. The maximum pH sensitivity is about 17 V/pH when biasing with square waves with a frequency of 100 KHz. In conclusion, gateless HEMT chemical sensors are fabricated and analyzed. Both DC and AC biasing characteristics are studied. The ultraviolet illumination affects the device performance and should be controlled for future device application. A detailed understanding of the AC biasing condition will help to develop new sensor capability in the near future.

    摘 要................................................................................................................I Abstract...........................................................................................................II 致謝……………………………………………………………………………………………..…………III 目錄.............................................................................................................IV 圖表目錄.......................................................................................................VII 一、 簡介.........................................................................................................1 1.1 前言.........................................................................................................1 1.2 二維電子氣(2DEG)的形成...................................................................2 1.3 AlGaN/GaN高電子遷移率電晶體(HEMT).......................................3 1.4 AlGaN/GaN高電子遷移率電晶體做為感測器的應用......................8 1.5 霍爾效應...............................................................................................13 1.6 UV光對於AlGaN/GaN高電子遷移率電晶體影響........................16 1.7 研究動機...............................................................................................19 二、 實驗儀器裝置介紹與元件製程..........................................................20 2.1 製程儀器介紹.......................................................................................20 2.1-1 光罩對準儀................................................................................20 2.1-2 電子束蒸鍍機............................................................................21 2.1-3 快速退火爐................................................................................21 V 2.1-4 電感耦合式電漿蝕刻機............................................................22 2.1-5 磁控濺鍍機................................................................................22 2.1-6 表面粗度儀................................................................................23 2.2 量測儀器介紹.......................................................................................24 2.2-1 分析型探針系統........................................................................24 2.2-2 酸鹼度計....................................................................................24 2.2-3 電源電錶....................................................................................25 2.2-4 訊號產生器................................................................................25 2.2-5 鎖向放大器................................................................................26 2.3 元件製作...............................................................................................27 2.3-1 元件結構....................................................................................27 2.3-2 歐姆接觸的製作........................................................................28 2.3-3 封裝元件製程............................................................................30 三、 直流訊號對於元件特性量測..............................................................35 3.1 直流電性量測.......................................................................................35 3.2 光效應對於元件電壓電流曲線的影響..............................................38 3.3 酸鹼度感測實驗結果與相關製程改進..............................................40 四、 交流訊號感測實驗與結果討論..........................................................44 4.1 鎖向放大感測與頻率響應..................................................................44 VI 4.2 利用差動放大電路測量酸鹼度..........................................................49 五、 結論與未來展望...................................................................................52 5.1 實驗結論...............................................................................................52 5.2 未來展望...............................................................................................53 Reference........................................................................................................55

    [1] U. K. Mishra, P. Parikh, and Y.-F. Wu, “AlGaN/GaN HEMTs—An Overview of Device Operation and Applications”, Proc. IEEE 90, pp.1022 (2002).
    [2] A. P. Zhang, L. B. Rowland, E. B. Kaminsky, J. B. Tucker, J. W. Kretchmer, A. F. Allen, J. Cook, and B. J. Edward ,” 9.2 W/mm (13.8 W) AlGaN/GaN HEMTs at 10 GHz and 55V drain bias”,Electron. Lett. 39, pp.245 (2003)
    [3] M. Stutzmann, G. Steinhoff, M. Eickhoff, O. Ambacher, C.E. Nebel, J. Schalwig, R. Neuberger, G. Muller “GaN-base heterostructures for sensor applications”, Diamond and Related Materials 11 ,(2002) pp.886-891
    [4] B.S. Kang, SuKu Kim, F. Ren, K. Ip, Y. W. Heo, B. Gila, C. R. Abernathy, D. P. Norton, and S. J. Pearton ”Detection of C2H4 Using Wide-Bandgap Semiconductor Sensors AlGaN/GaN MOS Diodes and Bulk ZnO Schottky Rectifiers”, Journal of The Electrochemical Society, 151(7), pp.G468-G471 (2004)
    [5] R. Gaska M. S. Shura and A. D. Bykhovski A. O. Orlov and G. L. Snider “Electron mobility in modulation-doped AlGaN–GaN heterostructures” , Applied Physics Letters Vol. 74, NO 2
    [6] J. Schalwig, G. Mu¨lle, M. Eickhoff, O. Ambacher, M. Stutzmann “Gas sensitive GaN/AlGaN-heterostructures”, Sensors and Actuators B 87, (2002) pp.425–430
    [7] B. S. Kang, J. Kim, S. Jang, and F. Ren J. W. Johnson, R. J. Therrien, P. Rajagopal, J. C. Roberts, E. L. Piner, and K. J. Linthicum S. N. G. Chu K. Baik, B. P. Gila, C. R. Abernathy, and S. J. Pearton “Capacitance pressure sensor based on GaN high-electron-mobility transistor-on-Si membrane” Applied Physics Letters 86, pp.253502 (2005)
    56
    [8] Georg steinhoff, Oliver Purrucker, Motomu Tanaka, Martin stutzmann, and Martin Eickhoff “AlGaN-A New Material System for Biosensors”, Adv. Funct. Mater. 2003, 13, No. 11, November
    [9] B.S. Kang , G. Louche , R.S. Duran , Y. Gnanou , S.J. Pearton , F. Ren ” Gateless AlGaN/GaN HEMT response to block co-polymers”, Solid-State Electronics 48, (2004) pp.851–854
    [10] B. S. Kang and F. Ren L. Wang, C. Lofton, and Weihong W. Tan S. J. Pearton A. Dabiran, A. Osinsky, and P. P. Chow “Electrical detection of immobilized proteins with ungated AlGaN/GaN high-electron-mobility Transistors”, Applied Physics Letters 87, pp.023508 (2005)
    [11] K.H. Chena, H.W.Wanga, B.S. Kanga, C.Y. Changb, Y.L.Wangb, T.P. Lelea, F. Rena, S.J. Peartonb, A. Dabiranc, A. Osinskyc, P.P. Chowc “Low Hg(II) ion concentration electrical detection with AlGaN/GaN high electron mobility transistors” Sensors and Actuators B 134 pp386–389 (2008)
    [12] B. S. Kang and F. Ren ,M. C. Kang, C. Lofton, and Weihong Tan, S. J. Pearton , A. Dabiran, A. Osinsky, and P. P. Chow “Detection of halide ions with AlGaN/GaN high electron mobility transistors” Applied Physics Letters 86, pp173502 (2005)
    [13] B. S. Kang and S. J. Pearton, J. J. Chen and F. Ren, J. W. Johnson, R. J. Therrien, P. Rajagopal, J. C. Roberts, E. L. Piner, and K. J. Linthicum “Electrical detection of deoxyribonucleic acid hybridization with AlGaN/GaN high electron mobility transistors” Applied Physics Letters 89, pp122102 (2006)
    [14] B. S. Kang, H. T. Wang, F. Ren,1, and S. J. Pearton “Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors” Journal of Applied Physics 104, pp 031101 (2008)
    [15] Donald A. Neamen “Semiconductor Physics & Devices”
    [16] 施敏“Semiconductor Devices Physics and Technology”
    57
    [17] Zhang Jin-feng , Hao Yue “AlGaN/GaN Two-dimensional gas : a critical review” Journal of Xidian University 3, pp326 (2003)
    [18] G. Steinhoff and M. Hermann W. J. Schaff and L. F. Eastman M. Stutzmann and M. Eickhoff “pH response of GaN surfaces and its application for pH-sensitive field-effect transistors” , Applied Physics Letters , Vol. 83, NO 1 (2003)
    [19] M. Bayer, C. Uhl, and P. Vogl “Theoretical study of electrolyte gate AlGaN/GaN field effect transistors” Journal of Applied Physics 97,
    pp 033703 (2005)
    [20] Takashi Mizutani, Senior Member, IEEE, Yutaka Ohno, M. Akita, Shigeru Kishimoto, and Koichi Maezawa, Member, IEEE “A Study on Current Collapse in AlGaN/GaN HEMTs Induced by Bias Stress”, IEEE Transactions on Electron Device, Vol. 50, NO. 10, October 2003
    [21] Yun-Chorng Chang, Yun-Li Li, Tzung-Han Lin, and Jinn-Kong Sheu “Variations of Channel Conductance in AlGaN/GaN Structure with Sub-Bandgap Laser Light and Above-Bandgap Illuminations” Japanese Journal of Applied Physics Vol. 46, No. 6A, 2007, pp. 3382–3384

    下載圖示 校內:2010-07-21公開
    校外:2010-07-21公開
    QR CODE