簡易檢索 / 詳目顯示

研究生: 黃胤鑫
Huang, Yin-Hsin
論文名稱: 孤立波通過不同彈性潛堤之流場量測與受力分析
Velocity and Force Measurements of Solitary Waves over Different Elastic Submerged Breakwaters
指導教授: 楊瑞源
Yang, Ray-Yeng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 77
中文關鍵詞: PIV彈性潛堤受力分析
外文關鍵詞: PIV, elastic submerged breakwaters, force analysis
相關次數: 點閱:63下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 面對全球暖化導致之氣候變遷,大規模冰山融化造成之海平面上升,近期加劇的極端氣候等等,為了降低上述對海岸造成之威脅,傳統的海岸防護工法,如海堤、護岸、突堤等大型石塊堆積而成的硬性結構,雖然發揮了保護居民生命財產與安全的作用,卻犧牲了人民的親水性與海岸景觀。因而海岸工程朝向永續發展的工法(如柔性工法或複合式工法)。本研究主要以質點影像測速(Particle Image Velocimetry,PIV) 量測孤立波通過不同勁度潛堤之流場特性變化,利用彎曲梁稱重感測器量測其受力變化。試驗模型有三種不同勁度之潛堤,分別為電木、橡膠及矽膠,而每種不同勁度潛堤搭配三種不同波高,分別為5公分、7.5公分和10公分之孤立波。本研究先是以9種試驗條件,以最大波高、最大受力以及彈性潛堤最大變形之三個不同時間點討論流場、渦度及流線變化,在以入射波高為分類依據,對上述之三個時間點進行交叉分析。受力部分則是對其做無因次化分析。結果顯示楊氏模數高的潛堤,因其變形量小,在同一個波浪條件之下,承受之力道最大,並在後方產生較大且速度較快之漩渦,而楊氏模數低的潛堤則相反,承受之力道較小,後方產生之漩渦也較小,並且當潛堤變形,也相應的影響後方漩渦中心,當變形量越大,漩渦也會相應的往底床壓縮,使漩渦中心低於楊氏模數高的潛堤產生之漩渦中心。

    In the face of climate change caused by global warming, rising sea level caused by large-scale melting icebergs, and recent intensifying extreme weather, traditional coastal protection methods, such as seawalls and jetties, may not be able to withstand the tsunami. Therefore, coastal engineering turns to the sustainable development methods (such as flexible construction methods or composite construction methods). In this study, Particle Image Velocimetry (PIV) was used to measure different wave heights of solitary waves passing through elastic submerged breakwaters, and the load cell were used to measure the force. Solitary waves were generated by Fenton’s Nine-order Solitary Waves, from 5 cm, 7.5 cm to 10 cm, passed through two elastic submerged breakwaters, and one rigid submerged breakwater in this experimental model. In this study, the changes of velocity field, vorticity, and streamline were investigated at three different time when the solitary wave reached its maximum wave height, the maximum force acting on each submerged breakwater, and the maximum deformation that each submerged breakwater maintain. Three of time position were cross-analyzed. The results show that the deformation of submerged breakwaters change with high Young's modulus magnitude. it could also be observed that the vortex center had a considerable correlation with the deformation of the elastic submerged breakwaters. After eliminating the condition of wave height by using dimensionless number, the force curves in the case of using silicon and rubber approximately coincided each other under the condition of different wave heights.

    中文摘要 I ABSTRACT II 誌謝 X 表目錄 XIII 圖目錄 XIV 符號表 XVII 第一章 緒論 1 1-1研究動機 1 1-2研究目的 1 第二章 文獻回顧 2 第三章 試驗設置與量測方法 3 3-1試驗設備 3 3-1-1水槽配置 3 3-1-2試驗器材 4 3-2試驗配置 8 3-3試驗條件 12 3-4試驗儀器率定 13 3-5試驗方法 14 3-5-1 PIV系統量測原理 14 3-5-2 渦流強度之定義與分析方法 17 3-5-3 紊流動能之定義與分析方法 18 3-6試驗驗證 20 3-6-1 PIV 水面擷取系統驗證 20 3-6-2 試驗重複性 21 第四章 結果與討論 23 4-1 個別試驗條件不同時間點之流場特性 23 4-2 相同材質、時間點不同入射波高之流場特性比較 43 4-3 相同入射波高相同時間點之不同潛堤流場特性比較 52 4-4 受力時序列之無因次分析 62 4-5 不同潛堤之流場流場剖面比較 64 第五章 結論與建議 74 5-1 結論 74 5-2 未來展望與建議 75 參考文獻 76

    1. Aristodemo F, Tripepi G, Gurnari L, Filianoti P. Determination of Force Coefficients for a Submerged Rigid Breakwater under the Action of Solitary Waves. Water. 13(3):315. (2021).
    2. Chang, K. A., Hsu, T.-J., and Liu, P. L. F., Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle: Part I. Solitary waves. Coastal Engineering, Vol.44,pp.13-36 (2001)
    3. Chen, H. et al., Deriving vegetation drag coefficients in combined wave-current flows by calibration and direct measurement methods. Advances in Water Resources, 122: 217-227. (2018.)
    4. Fenton, J. A ninth-order solution for the solitary wave. Journal of Fluid Mechanics, 53(2), 257–271. (1972).
    5. Hu, Z., Suzuki, T., Zitman, T., Uittewaal, W. and Stive, M., Laboratory study on wave dissipation by vegetation in combined current–wave flow. Coastal Engineering, 88: 131-142. (2014).
    6. Huang, Z., Yao, Y., Sim, S.Y. and Yao, Y. Interaction of solitary waves with emergent, rigid vegetation. Ocean Engineering, 38(10): 1080-1088. (2011).
    7. Huang, Z.-C., Hsiao, S.-C., Hwung, H.-H., Chang, K.-A., Turbulence and energydissipations of surf-zone spilling breakers. Coastal Engineering 56 (7), 733–746. ( 2009).
    8. Liao, K., Hu, C., & Sueyoshi, M. Free surface flow impacting on an elastic structure: Experiment versus numerical simulation. Applied Ocean Research, 50, 192-208. (2015).
    9. Lin, C. et al., Velocity fields in near-bottom and boundary layer flows in prebreaking zone of a solitary wave propagating over a 1: 10 slope. Journal of Waterway, Port, Coastal, and Ocean Engineering, 141(3): 04014038. (2015).
    10. Losada, I.J., Maza, M. and Lara, J.L., A new formulation for vegetation-induced damping under combined waves and currents. Coastal Engineering, 107: 1-13. (2016).
    11. Luhar, M. and Nepf, H.M., Wave-induced dynamics of flexible blades. Journal of Fluids and Structures, 61: 20-41. (2016).
    12. Mori, N. and Chang, K.-A., Introduction to mpiv. user reference manual, 14. (2003).
    13. Persoons and O'Donovan, High dynamic velocity range particle image velocimetry using multiple pulse separation imaging, Sensors, vol. 11, no. 1, pp. 1-18, (2011).
    14. Raffel, M. et al., Particle image velocimetry: A practical guide. Springer. (2018).
    15. Wu, N.-J., Hsiao, S.-C., Chen, H.-H. and Yang, R.-Y., The study on solitary waves generated by a piston-type wave maker. Ocean Engineering, 117: 114-129. (2016).
    16. Wu, Y.-T., Hsiao, S.-C., Huang, Z.-C. and Hwang, K.-S., Propagation of solitary waves over a bottom-mounted barrier. Coastal Engineering, 62: 31-47. (2012).
    17. Zhang, Y., Tang, C. and Nepf, H., Turbulent kinetic energy in submerged model canopies under oscillatory flow. Water Resources Research, 54(3): 1734-1750. (2018).
    18. 郭金棟,海岸工程,中國水利工程學會,203-205,(1988)

    下載圖示 校內:2024-01-26公開
    校外:2024-01-26公開
    QR CODE