簡易檢索 / 詳目顯示

研究生: 寸恩澤
Cun, En-Ze
論文名稱: 一個基於只有前置放大的比較器之十位元每秒取樣三億次逐漸趨近式類比數位轉換器
A 10-bit 300-MS/s Successive-Approximation Analog-to-Digital Converter with a Pre-amplifier-only Comparator
指導教授: 張順志
Chang, Soon-Jyh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 113
中文關鍵詞: 逐漸趨近式類比數位轉換器非二進位演算法多組比較器只有前置放大器的比較器高增益的動態前置放大器
外文關鍵詞: Successive approximation register (SAR) analog-to-digital converter (ADC), redundancy (or non-binary) algorithm, multiple comparators, pre-amplifier-only comparator, high-gain dynamic pre-amplifier
相關次數: 點閱:152下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文呈現一個使用40奈米製程所研製之單通道十位元每秒取樣三億次的逐漸趨近式類比數位轉換器。
    我們提出了一種用於高速逐漸趨近式類比數位轉換器的粗細解析混合架構。在前面粗解析的位元循環裡,我們採用可提升速度的迴圈展開式技巧,在後面細解析中,我們採用了一個只使用前置放大器作為比較器的時序方案來提高操作速度。此外,我們採用非二進位的搜尋演算法來容忍粗細解析位元循環之間的不匹配,以維持整體性能。再者,也採用了反切電容切換方法,以提高比較速度。藉由上述所提的技巧,實現了高速的逐漸趨近式類比數位轉換器。
    本設計以台積電40奈米CMOS標準1P9M製程實作晶片,其核心電路面積佔了0.0289 mm2。量測結果顯示,在1.1伏特電源供應及每秒三億次的取樣頻率下,消耗功率為4.67 mW;在沒有使用複雜的校正電路下,最高的有效位元為9.36位元,每次的資料轉換所消耗的能量為23.6 fJ。

    A single-channel 10-bit 300-MS/s successive-approximation register (SAR) analog-to-digital converter (ADC) in 40-nm CMOS process is presented in this thesis.
    We propose a hybrid architecture with one common DAC to implement a high-speed SAR ADC. The operation speed is enhanced by adopting the loop-unrolled technique in the coarse conversions, and timing control scheme with pre-amplifier-only comparator technique in the fine conversions. Considering the mismatch between coarse and fine conversions, we adopt the non-binary search scheme with redundancy to maintain the overall performance. Moreover, switchback capacitor switching method is also used, which increases the speed of the comparison. With the above-mentioned techniques, it leads to a high-speed SAR ADC.
    The proof-of-concept prototype was fabricated in a TSMC 40-nm CMOS technology. The core area occupies 0.0289 mm2. At a supply voltage of 1.1-V and sampling rate of 300-MS/s, the power consumption of the SAR ADC is 4.67 mW and the peak ENOB is 9.36 bits. It achieves a figure of merit (FoM) of 23.6 fJ/conversion-step.

    摘 要 III Abstract IV List of Tables IX List of Figures X List of Abbreviations XIV Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization of the Thesis 4 Chapter 2 Design Considerations for High-speed SAR ADCs 5 2.1 Basics of SAR ADCs 5 2.1.1 Sampling Phase 7 2.1.2 Conversion Phase 7 2.2 Speed Limitations for SAR ADCs 8 2.2.1 Comparison Time 9 2.2.2 DAC Settling Time and Comparator Resetting Time 14 2.2.3 Digital Circuit Gate Delay 17 Chapter 3 Design Techniques for High-speed SAR ADCs 20 3.1 Introduction 20 3.2 Timing Control Schemes 21 3.3 Simplified Digital Control Circuits 24 3.4 Sub-ranging Architectures 29 3.5 Multi-comparator Architectures 38 3.6 Capacitor Switching Methods 42 3.6.1 Conventional Capacitor Switching Procedure 43 3.6.2 Monotonic Capacitor Switching Procedure 45 3.6.3 SwitchBack Capacitor Switching Procedure 47 3.7 Error Tolerance of SAR ADCs 49 3.7.1 Binary Search algorithm 50 3.7.2 Redundancy Search algorithm 52 3.7.3 Types of Redundancy SAR ADCs 58 Chapter 4 A 10-bit 300-MS/s SAR ADC 60 4.1 Introduction 60 4.2 Architecture Consideration 61 4.2.1 Hybrid Coarse Fine SAR ADC Architecture 61 4.2.2 Timing Control scheme with Pre-amplifier-only Comparator 64 4.2.3 Dynamic High-gain Pre-amplifier 68 4.2.4 Redundancy Algorithm Design Consideration 71 4.2.5 Switchback Switching Method 74 4.3 Architecture of the Proposed SAR ADC 77 4.4 Circuit Implementation 80 4.4.1 Bootstrapped Switch 80 4.4.2 Dynamic Comparator 83 4.4.3 Digital Control Logic Circuits 85 4.4.4 Capacitive DAC Array 91 Chapter 5 Simulation and Measurement Results 93 5.1 Layout and Chip Floor Plan 93 5.2 Simulation Results 96 5.3 Grounding in PCB Design 98 5.4 Die Micrograph and Measurement Setup 100 5.5 Measurement Results 102 Chapter 6 Conclusions and Future Works 106 Bibliography 108

    [1] B. Murmann, "ADC Performance Survey 1997-2018," [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.
    [2] D. Robertson, "The Past, Present, and Future of Data Converters and Mixed Signal ICs: A "Universal" Model," 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers., Honolulu, HI, 2006, pp. 1-4.
    [3] R. H. Walden, "Analog-to-digital converter survey and analysis," in IEEE Journal on Selected Areas in Communications, vol. 17, no. 4, pp. 539-550, April 1999.
    [4] B. Razavi, Principles of Data Conversion System Design, New York, USA: Wiley-IEEE Press, 1995.
    [5] B. Wicht, T. Nirschl and D. Schmitt-Landsiedel, "Yield and speed optimization of a latch-type voltage sense amplifier," in IEEE Journal of Solid-State Circuits, vol. 39, no. 7, pp. 1148-1158, July 2004.
    [6] D. Schinkel et al., “A double-tail latch-type voltage sense amplifier with 18 ps setup + hold time,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2007, pp. 314-315.
    [7] M. van Elzakker et al., “A 1.9 μW 4.4 fJ/conversion-step 10 b 1 MS/s charge-redistribution ADC,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2008, pp. 244-245.
    [8] M. Miyahara et al., “A low-noise self-calibrating dynamic comparator for high-speed ADCs,” in Proc. IEEE Asian Solid-State Circuits Conf. (ASSCC), Nov. 2008, pp. 269-272.
    [9] T. Ogawa et al., “SAR ADC algorithm with redundancy,” in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS), Nov. 2008, pp. 268-271.
    [10] C.-C. Liu et al., “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” in IEEE J. Solid-State Circuits, vol. 45, no. 4, Dec. 2010, pp. 731-740.
    [11] S.-W. M and R. W. Brodersen, “ A 6-bit 600-MS/s 5.3mW asynchronous ADC in 0.13μm CMOS,” in IEEE J. Solid-State Circuits, vol. 41, no. 12, Dec. 2006, pp. 2669-2680.
    [12] B. P. Ginsburg et al., “Dual time-interleaved successive approximation register ADCs for an ultra-wideband receiver,” in IEEE J. Solid-State Circuits, vol. 42, no. 2, Dec. 2007, pp. 247-757.
    [13] U.-F. Chio et al., “A self-timing switch-driving register by precharge-evaluate logic high-speed SAR ADCs,” in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS), Dec. 2008, pp. 1164-1167.
    [14] Y. Zhu et al., “A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS,” in IEEE J. Solid-State Circuits, vol. 45, no. 2, Jun. 2010, pp. 1111-1121.
    [15] R. Kapusta et al., “A 14b 80MS/s SAR ADC with 73.6dB SNDR in 65nm CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2013, pp. 472-473.
    [16] Pedro M. Figueiredo et al., “A 90nm CMOS 1.2V 6b 1GS/s Two-Step subranging ADC,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2006, pp. 80-81.
    [17] Y.-Z. Lin et al., “A 9-bit 150-MS/s 1.53-mW subranged SAR ADC in 90-nm CMOS,” in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, Jun. 2010, pp. 243-244.
    [18] Y.-Z. Lin et al., “A 0.9-V 11-bit 25-MS/s Binary-Search SAR ADC in 90-nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conf. (ASSCC), Nov. 2011, pp. 69-72.
    [19] Huang-Yen Tai et al., “A 0.85fJ/conversion-step 10b 200KS/s Subranging SAR ADC in 40nm CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2014, pp. 196-198.
    [20] Michael P. Flynn et al., “A 1mW 71.5dB SNDR 50MS/s 13b Fully Differential Ring-Amplifier-Base SAR-Assisted Pipeline ADC,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2015, pp. 458-460.
    [21] G. Van der Plas et al., “A 150 MS/s 133μW 7 bit ADC in 90nm Digital CMOS,” in IEEE J. Solid-State Circuits, vol. 43, no. 12, Dec. 2008, pp. 2631-2640.
    [22] Y.-Z. Lin et al., “A 5b 800MS/s 2mW asynchronous binary-search ADC in 65nm CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2009, pp. 80-81.
    [23] Y.-S Hu et al., “A 0.6V 6.4fJ/conversion-step 10-bit 150MS/s sub-ranging SAR ADC in 40nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conf. (ASSCC), Nov. 2011, pp. 69-72.
    [24] L. Kull et al., “A 3.1mW 8b 1.2GS/s single-channel asynchronous SAR ADC with alternate comparators for enhanced speed in 32nm digital SOI CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2013, pp. 468-469.
    [25] G. Van der Plas et al., “A 150 MS/s 133μW 7 bit ADC in 90nm Digital CMOS,” in IEEE J. Solid-State Circuits, vol. 43, no. 12, Dec. 2008, pp. 2631-2640.
    [26] Tao Jiang et al., “Single-channel, 1.25-GS/s, 6-bit loop-unrolled asynchronous SAR ADC in 40nm CMOS,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2010, pp. 1-4.
    [27] M.-J. E. Lee et al., “Low-power are-efficient high-speed I/O circuit techniques,” in IEEE J. Solid-State Circuits, vol. 35, no. 11, Nov. 2000, pp. 1591-1599.
    [28] M. Miyahara et al., “A low-noise self-calibrating dynamic comparator for high-speed ADCs,” in Proc. IEEE Asian Solid-State Circuits Conf. (ASSCC), Nov. 2008, pp. 269-272.
    [29] B. Verbruggen et al., “A 2.2mW 1.75 GS/s 5 Bit Folding Flash ADC in 90nm Digital CMOS,” in IEEE J. Solid-State Circuits, vol. 44, no. 3, March. 2009, pp. 874-882.
    [30] P. Harpe et al., “Calibration of Ultra Low-power Time-Interleaved SAR ADCs,” in Proc. IEEE New Circuits and Systems Conference (NEWCAS), 2012, pp. 361-364.
    [31] F. H. Gebara et al., “A body-driven offset cancellation technique in PD-SOI,” International Conference on Microelectronics, vol. 2, May. 2004, pp. 567-570.
    [32] Y.-S. Shu et al., “A 6b 3GS/s 11mW Fully Dynamic Flash ADC in 40nm CMOS with Reduced Number of Comparators,” in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, June. 2012, pp. 26-27.
    [33] V. H.-C. Chen et al., “An 8.5mW 5GS/s 6b flash ADC with dynamic offset calibration in 32nm CMOS SOI,” in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, June. 2013, pp. 264-265.
    [34] G.-Y. Huang et al., “A 10-bit 30-MS/s SAR ADC using a monotonic switchback switching method,” in IEEE Transactions on VLSI Systems, vol. 21, no. 3, Dec. 2013, pp. 584-588.
    [35] C.-C. Liu et al., “A 10b 100MS/s 1.13mW SAR ADC with binary scaled error compensation,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2010, pp. 386-387.
    [36] P. Harpe et al., “A 7-to-10b 0-to-4MS/s flexible SAR ADC with 6.5-to-16fJ/conversion-step,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2012, pp. 472-474.
    [37] W. Liu et al., “A 12b 22.5/45MS/s 3.0mW 0.059mm2 CMOS SAR ADC achieving over 90 dB SFDR,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2010, pp. 380-381.
    [38] W. Liu et al., “A 12-bit 50-MS/s 3.3mW SAR ADC with background calibration,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2012, pp. 1-4.
    [39] H.-Y. Tai et al., “A 3.2 fJ/c.-s. 0.3V 10b 100KS/s SAR ADC in 90nm CMOS,” in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, Jun. 2012, pp. 92-93.
    [40] A. Hastings, The Art of Analog Layout. Englewood Cliffs, NJ: Prentice-Hall, 2001.
    [41] C. Hou, S. Chang, H. Wu, H. Hu and E. Cun, "An 8-bit 400-MS/s calibration-free SAR ADC with a pre-amplifier-only comparator," 2017 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, 2017, pp. 1-4.
    [42] M. Dessouky et al., “Input switch configuration suitable for rail-to-rail operation of switched opamp circuits,” Electron. Lett., vol. 35, Jan. 1999, pp. 8–10.
    [43] G. Huang et al., “A fast bootstrapped switch for high-speed high-resolution A/D converter,” in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS), 2010, pp. 382–385.
    [44] Shao-Hua Wan et al., “A 10-bit 50-MS/s SAR ADC with Techniques for Relaxing the Requirement on Driving Capability of Reference Voltage Buffers,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2013, pp. 293–296.
    [45] G.-Y. Huang et al., “A 10 b 200 MS/s 0.82 mW SAR ADC in 40 nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2013. pp. 289–292.
    [46] H. Zumbahlen, Staying well grounded, Analog Dialogue 46-06 June 2012.
    [47] X. Tang, L. Chen, J. Song and N. Sun, "A 10-b 750µW 200MS/s fully dynamic single-channel SAR ADC in 40nm CMOS," ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference, Lausanne, 2016, pp. 413-416.
    [48] J. Song, X. Tang and N. Sun, "A 10-b 2b/cycle 300MS/s SAR ADC with a single differential DAC in 40nm CMOS," 2017 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, 2017, pp. 1-4.
    [49] J. Tsai et al., "A 0.003 mm2 10 b 240 MS/s 0.7 mW SAR ADC in 28 nm CMOS With Digital Error Correction and Correlated-Reversed Switching," in IEEE Journal of Solid-State Circuits, vol. 50, no. 6, June 2015, pp. 1382-1398.
    [50] J.-H. Tsai et al., ‘‘A 1-V, 8b, 40MS/s, 113μW Charge-Recycling SAR ADC with a 14μW Asynchronous Controller,’’ in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, June 2011, pp. 264–265.

    下載圖示 校內:立即公開
    校外:2020-12-31公開
    QR CODE