簡易檢索 / 詳目顯示

研究生: 陳聖儒
Chen, Sheng-Ju
論文名稱: 數位控制無橋式功率因數校正器之設計與研製
Design and Implementation of a DSP Controlled Bridgeless Power Factor Corrector
指導教授: 梁從主
Liang, Tsorng-Juu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 63
中文關鍵詞: 無橋式昇壓型功率因數校正器數位控制平均電流模式
外文關鍵詞: bridgeless boost PFC, digital control, average current mode
相關次數: 點閱:120下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統昇壓型功率因數校正器於高功率應用時,全橋整流二極體會造成相當大的功率損失。本論文研製一數位控制之無橋式昇壓型功率因數校正器,以數位訊號處理器實行平均電流控制模式,使輸入電流追隨輸入電壓達到高功率因數及低輸入電流失真。論文首先針對功率因數校正器的種類與控制方法進行探討,分析無橋式昇壓型功率因數校正器的動作原理,探討相關重要元件之參數設計,說明數位訊號處理器實現平均電流控制模式之流程,及電壓外迴路與電流內迴路與補償器設計。最後,以數位訊號處理器研製一輸入電壓90-264 Vrms,輸出電壓為400 V,最大功率1300 W之輸出定電壓無橋式功率因數校正器以驗證控制器設計之可行性。最大效率為98.1%,PF最高為0.996,iTHD最低為5.1%。

    When conventional boost power factor corrector (PFC) circuit operates in high power application, rectifier bridge diode causes high power loss. A bridgeless PFC circuit with digital signal processor (DSP) control is implemented in this thesis. Average current mode is implemented by DSP and the input current follows the input voltage.Therefore, the PFC converter achieves high power factor and low total harmonic distortion current. Types of PFC converter and the methods of control are discussed. The operating principle of semi-boost PFC converter is analyzed and the parameters of key components are design. The software of average current mode control in DSP is described. Outter voltage loop, inner current loop and the design of the compensator are introduced. Finally, a 1.3 kw bridgeless PFC circuit with DSP control is implemented. Input voltage range is 90 Vrms ~ 264 Vrms and output voltage is constant 400 V. Maximum efficiency is 98.1%. Maximum power factor is 0.996 and minimum iTHD is 5.1%.

    Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Organization 4 Chapter 2 Introduction of Boost PFC 5 2.1 Topology of Boost PFC 5 2.2 Family of Bridgeless PFC 8 2.2.1 Semi-boost Bridgeless PFC 9 2.2.2 Pseudo Totem-pole Bridgeless PFC 9 2.2.3 Totem-pole Bridgeless PFC 10 2.2.4 Bridgeless PFC with Bidirectional Switches 11 2.3 Types of PFC Current Control 13 2.3.1 Hysteresis Current Mode 16 2.3.2 Peak-Current Mode 18 2.3.3 Average Current Mode Control 20 Chapter 3 Analysis of Semi-Boost Bridgeless PFC 22 3.1 Operating Principle of Semi-Boost Bridgeless PFC 22 3.2 Analysis of Semi-Boost Bridgeless PFC 30 3.3 Design of DSP Controller 36 3.3.1 Software Program 37 3.3.2 Feedback Loop Design 40 Chapter 4 System Implementation and Discussion of Experiments 46 4.1 Specifications and Key Components Design of Bridgeless PFC 46 4.2 Feedback Loop Software Design 48 4.2.1 Design of Current Loop 48 4.2.2 Design of Voltage Loop 49 4.3 Experimental results and Discussions 50 Chapter 5 Conclusions and Future Works 60 5.1 Conclusions 60 5.2 Future Works 60 REFERENCES 61

    [1] Q. Zhao, F. C. Lee, and F. S. Tsai, “Voltage and current stress reduction in single-stage power factor correction AC/DC converters with bulk capacitor voltage feedbeck,” IEEE Trans. on Power Electron., vol. 17, no. 4, pp. 477-484, July. 2002.
    [2] Y. Jiang, F. C. Lee, G. Hua, and W. Tang, “A novel single-phase power factor correction scheme,” in Applied Power Electonics Conference and Exposition (APEC), San Diego.CA, Mar. 1993, pp.287-292.
    [3] M. J. Kocher and R. L. Steigerwald, “An AC to DC converter with high quality input waveforms,” IEEE Trans. on Industry., vol. IA-19, no. 4, pp. 586-599, July/Aug. 1983.
    [4] C. Qiao and K. M. Smedly, “A topology survey of singel-stage power factor corrector with a boost type input-current-shaper,” IEEE Trans. on Power Electron., vol. 16, no. 3, pp. 360-368, May. 2001.
    [5] D. Tollik and A. Pietkiewicz, “Comparative analysis of 1-phase active power factor correction topologies,” in Telecommunications Energy Conference, Washington.DC, Oct. 1992, pp.517-523.
    [6] H. Zeng and J. Zhang, “An improved control scheme for buck PFC converter for high efficiency adapter application,” in IEEE Energy Conversion Congress and Exposition(ECCE), Raleigh.NC, Sept. 2012, pp.4569-4576.
    [7] L. Huber, Y. Jang, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. on Power Electron., vol. 23, no. 3, pp. 1381-1390, May. 2008.
    [8] “A bridgeless PFC configuration based on L4981 PFC controller,”ST Application Note AN1606
    [9] N. Yadaiah, A. S. Kumar, and Y. M. Reddy, “DSP based control of constant frequency and average current mode of boost converter for power factor correction (PFC) ,” in Advances in Power Conversion and Energy Technologies (APCET), Mylavaram, Andhra Pradesh, Aug. 2012, pp.1-6.
    [10] M. Fu and Q. Chen, “A DSP based controller for power factor correction (PFC) in a rectifier circuit,” in Applied Power Electonics Conference and Exposition (APEC), vol. 1, Anaheim.CA, Mar. 2001, pp.144-149.
    [11] J. H. Zhou, Z. Y. Lu, Z. Y. Lin, Y. C. Ren, Z. M. Qian, and Y. S. Wang, “A novel DSP controlled 2kW PFC converter with a simple sampling algorithm,” in Applied Power Electonics Conference and Exposition (APEC), vol. 1, New Orleans.CA, Feb. 2000, pp.434-437.
    [12] Y. Li and T. Takahashi, “A digitally controlled 4-kW single-phase bridgeless PFC circuit for air conditioner moter drive applications ,” in Power Electronics and Motion Control Conference(IPEMC), Shanghai, Aug. 2006, pp.1-5.
    [13] “Average current mode controlled power factor correction converter using TMS320LF2407A,”TI Application Report APRA902A
    [14] L. Balogh and R. Redl, “Power-factor correction with interleaved boost converters in continuous-inductor-current mode,” in Applied Power Electonics Conference and Exposition (APEC), San Diego.CA, Mar. 1993, pp.168-174.
    [15] P. N. Enjeti and R. Martinez, “A high performance single phase AC to DC rectifier with input power factor correction,” in Applied Power Electonics Conference and Exposition (APEC), San Diego.CA, Mar. 1993, pp.190-195.
    [16] Z. H. Jiang, X. D. Sun, and L. P. Huang, “The controller of high frequency and high dynamic performance dual-boost PWM module based on DSP,” in Industrial Electronics Society(IECON), vol. 1, Nov. 2003, pp.249-254.
    [17] P. Kong, S. Wang, and F. C. Lee, “Common mode EMI noise suppression in bridgeless boost PFC converter,” in Applied Power Electonics Conference and Exposition (APEC), Anaheim.CA, Feb. 2007, pp.929-935.
    [18] M. Gopinath, Prabakaran, and S. ramareddy, “A brief analysis on bridgeless boost PFC converter,” in Sustainable Energy and Intelligent System (SEISCON), Chennai, July. 2011, pp.242-246.
    [19] Y. Jang and M. M. Jovanovic, “A bridgeless PFC boost rectifier with optimized magnetic utilization,” IEEE Trans. on Power Electron., vol. 24, no. 1, pp. 85-93, Jan. 2009.
    [20] B. Su, J. Zhang, and Z. Lu, “Totem-pole boost bridgeless PFC rectifier with simple zero-current detection and full-range ZVS operating at boundarty of DCM/CCM,” IEEE Trans. on Power Electron., vol. 26, no. 2, pp. 427-435, Feb. 2011.
    [21] W. Y. Choi, J. M. Kwon, E. H. Kim, J. J. Lee, and B. H. Kwon, “Bridgeless boost rectifier with low conduction losses and reduced diode reverse-recovery problems,” IEEE Trans. on Power Electron., vol. 54, no. 2, pp. 769-780, Apr. 2007.
    [22] Y. Tang, W. Ding, and A. Khaligh, “A bridgeless totem-pole interleaved PFC converter for plug-in electric vehicles,” in Applied Power Electonics Conference and Exposition (APEC), Long Beach,CA, Mar. 2016, pp.440-445.
    [23] J. Sebastian, M. Jaureguizar, and J. Uceda, “An overveiw of power factor correction in single-phase off-line power supply systems,” in Industrial Electronics, Control and Instrumentation(IECON), Bologna, Sep. 1994, pp.1688-1693.
    [24] R. Redl and B. P. Erisman, “Reducing distortion in peak-current-controlled boost power-factor correctors,” in Applied Power Electonics Conference and Exposition (APEC), vol 2, Orlando, FL, Feb. 1994, pp.92-100.
    [25] “UCC28070 implement bridgeless power factor correction (PFC) pre-regulator design,”TI Application Report SLUA517

    無法下載圖示 校內:2021-08-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE