| 研究生: |
林盛霖 Lin, Sheng-Lin |
|---|---|
| 論文名稱: |
同時針對良率提升及錯誤診斷之可修復晶片設計 Repairable Cell-Based Chip Design for Simultaneous Yield Enhancement and Fault Diagnosis |
| 指導教授: |
李昆忠
Lee, Kuen-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 32 |
| 中文關鍵詞: | 錯誤診斷 、邏輯修復 、電晶體缺陷 、診斷向量產生方法 |
| 外文關鍵詞: | fault diagnosis, logic repair, transistor defect, diagnosis pattern generation |
| 相關次數: | 點閱:99 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
故障診斷對於提升晶片良率扮演很重要的腳色,由於電路結構和自動測試向量產生工具的限制,即便使用測試向量和診斷向量,電路中仍存在許多無法分開的錯誤對,其中包含等效錯誤對和終止錯誤對,本篇論文提出一種基於掃描式的診斷-修復架構,可以透過修復電路缺陷來分開錯誤對,我們提出了一種可以修復標準元件的技術,使得有缺陷邏輯閘的修復更容易控制。為了有效區分所有錯誤對,我們開發了一個新的故障分組方法,並將其運用在我們提出的診斷-修復架構中,基於這個架構,我們可以同時分開多組錯誤對並修復有缺陷的邏輯閘以提高良率,實驗結果顯示我們只需要很小的面積負擔,就能夠分開關鍵的錯誤對,同時修復有缺陷的邏輯閘。
Fault diagnosis plays a major role in IC yield enhancement. Due to circuit structure and ATPG limitation, there exist many undistinguished fault pairs after applying test patterns and diagnosis patterns, including equivalent fault pairs and aborted fault pairs. This thesis proposes a scan-based repair-for-diagnosis architecture that can distinguish undistinguished fault pairs by repairing cell defects. A repairable standard cell design technique is presented that makes the repair of defective cells easy to control. To efficiently distinguish all targeted undistinguished fault pairs, a novel fault-grouping method is developed and applied to the proposed scan-based repair-for-diagnosis architecture. With this architecture, one can distinguish multiple fault pairs and repair those defective cells hence improving yield at the same time. Experimental results show that our proposed architecture can distinguish all targeted undistinguished fault pairs and repair the defective cells with low area overhead.
[1] E. J. McCluskey, A. Al-Yamani, J. C. M. Li, T. Chao-Wen, E. Volkerink, F. F. Ferhani, et al., "ELF-Murphy data on defects and tests sets," in Proc. 22nd IEEE, VLSI Test Symp., 2004, pp. 16-22.
[2] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Architectures: Design for Testability, Morgan Kaufmann, 2006.
[3] X. Yu and R. D. Blanton, “Diagnosis-Assisted Adaptive Test,” IEEE Trans. Comput.-Aided Des., Vol. 31, No. 9, pp. 1405-1416, Sep. 2012.
[4] W. C. Tam and R. D. Blanton, “Physically-Aware analysis of systematic defects in integrated circuits,” in Proc. IEEE Design & Test of Computer, Vol. 29, No. 5, pp. 81-93, Oct. 2012.
[5] X. Fan, H. Tang, Y. Huang, W.-T. Cheng, S.M. Reddy and B. Benware, “Improved volume diagnosis throughput using dynamic design partitioning,” in Proc. Int. Test Conf., 2012, pp. 1-10.
[6] P.-Y. Hsueh, S.-F. Kuo, C.-W. Tzeng, J.-N. Lee and C.-F. Wu, “Case study of yield learning through in-house flow of volume diagnosis,” in Proc. VLSI Des., Autom. and Test, 2013, pp. 1-4.
[7] Y. Zhang and V. D. Agrawal, “A diagnostic test generation system,” in Proc. Int. Test Conf., 2010, pp. 1-10.
[8] J. Ye, X. Zhang, Y. Hu and X. Li, “Substantial fault pairs at-a-time (SFPAT): An automatic diagnostic pattern generation method,” in Proc. Asian Test Symp., 2010, pp. 192-197.
[9] C.-H. Wu, K.-J. Lee, W.-C. Lien, “An efficient diagnosis method to deal with multiple fault-pairs simultaneously using a single circuit model,” in Proc. VLSI Test Symp. 2014, pp. 240-245.
[10] Y. Zhang and V. D. Agrawal, “Reduced complexity of test generation algorithms for transition fault diagnosis,” in Proc. Int. Conf. Comput. Des., 2011, pp. 96–101.
[11] K.-J. Lee and C.-H. Wu, “An efficient diagnosis-aware pattern generation procedure for transition faults” in Proc. Int. Test Conf., 2014, pp. 1-10.
[12] I. Pomeranz, "Gradual diagnostic test generation and observation point insertion based on the structural distance between indistinguished fault pairs," IEEE Trans. VLSI Syst., vol. 20, pp. 1026-1035, 2012.
[13] C. H. Wu, Y. D. Wang, and K. J. Lee, "Improve transition fault diagnosability via observation point insertion," in Proc. Int. Symp. VLSI Des., Autom. and Test (VLSI-DAT), 2015, pp. 1-4.
[14] Alsaiari, U. et al, “Partitioning for selective flip-flop redundancy in sequential circuits”, in Proc. Int. Symp. Quality Electron. Des., 2008, pp.798-803.
[15] Alsaiari, U. et al, “Power, delay and yield analysis of BIST/BISR PLAs using column redundancy”, in Proc. Int. Symp. Quality Electron. Des., 2007, pp. 703-710.
[16] Subhasish, M. et al., “Reconfigurable architecture for autonomous self-repair”, IEEE Trans. Des. & Test of Comput., vol. 21, Issue 3, pp.228-240, May 2004.
[17] C. L. Su, R. F. Huang, C. W. Wu, K. L. Luo, and W. C. Wu, "A Built-in Self-Diagnosis and Repair Design With Fail Pattern Identification for Memories," IEEE Trans. VLSI Syst., vol. 19, pp. 2184-2194, 2011.
[18] J. A. Abraham and W. K. Fuchs, "Fault and error models for VLSI," in Proc. of the IEEE, vol. 74, 1986, pp. 639-654.
[19] E. F. Moore and C. E. Shannon. Reliable circuits using less reliable relays. J. Franklin Inst., pp. 191-208, 1956.
[20] R. David, S. Rahal, and J. L. Rainard, "Some relationships between delay testing and stuck-open testing in CMOS circuits," in Proc. Eur. Des. Autom. Conf., 1990, pp. 339-343.
[21] N. Devtaprasanna, A. Gunda, P. Krishnamurthy, S. M. Reddy, and I. Pomeranz, "A unified method to detect transistor stuck-open faults and transition delay faults," in Proc. Eur. Test Symp., 2006, pp. 185-192.
[22] Y. Haihua and A. D. Singh, "A delay test to differentiate resistive interconnect faults from weak transistor defects," in Proc. Int. Conf. VLSI Des., 2005, pp. 47-52.
[23] T. W. Bartenstein, “Panel 9—Diagnostics vs failure analysis,” in Proc. Int. Test Conf., 2004, p. 1439.
[24] Y. Okuda, “Panel synopsis—Diagnosis meets physical failure analysis: How long can we succeed?,” in Proc. Int. Test Conf., 2004, p. 1438.
[25] Synopsys, Inc., TetraMAX ATPG User Guide, Version J-2014.09-SP1. Sep. 2014.