簡易檢索 / 詳目顯示

研究生: 高欣鴻
Kao, Shin-Hong
論文名稱: 以模組化系統模擬在波浪作用下準靜態錨鍊系統對於不同形式浮動式風力發電機平台之作用
The Simulation of the Influences of the Quasi-Static Mooring Systems on Several Offshore Wind Floats in Waves by the Modular System
指導教授: 林宇銜
Lin, Yu-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 104
中文關鍵詞: 浮動式風機錨鍊系統模組化系統邊界元素法
外文關鍵詞: Floating Wind Turbine, Mooring System, Modular System, Boundary Element Method
相關次數: 點閱:76下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究擬以MATLAB/SIMULINK為基礎,建構一套用以推估浮動式風機平台動態反應的模組化模擬系統。本系統主要包含以線性勢能流論為基礎的邊界元素法求解器,及以康明斯時域方程式為基礎的流體動力模擬器,並搭配可視化軟體ParaView進行波浪與風機浮台之交互作用。在本論文中將比較幾種典型的浮式風機平台在波浪作用下的動態反應,及其受準靜態錨鍊系統的影響程度。根據不同剛度矩陣的設定,可用來探討在規則或不規則波海況下三種不同型式錨鍊系統的動態特性。經由反應振幅因子的分析可得知各型式風機浮台所對應的自然頻率,及確保所設計風機的安全性與穩定性。

    This thesis is study of the motion responses of a floating platform in waves based on a modular design system, comprising a hydrodynamic simulator, Matlab Simulink and ParaView. Both radiation and diffraction methods are used to obtain the hydrodynamic forces from a frequency-domain boundary element Method (BEM) solver. In order to simulate the system dynamics of a TLP (tesion-leg plaform), spar, barge and a semi- submersible floating platform, the Cummins time-domain equation is adopted by solving the governing equations for 3 degrees-of-freedom (DOF) motions, including surge, heave, and pitch. Finally, Paraview are used to visualizations to analyze their data. In addition, an indicator, a response amplitude operator (RAO), is considered to determine the resonance period of the floating platforms by performing regular wave and irregular wave simulations at various frequencies. Since the RAO peak corresponds to the resonance period of the floating platform, it would be considered the most influential a predominant parameter related to the safety and stability designs, and it can be used to estimate the floating platform’s response to waves in the case of a mooring system. Subsequently, the results present that a quasi-static mooring system is applicable for the estimation of mooring forces as well as for determining the restrictions for floating platforms in terms of motion responses. By comparing our model results with other published results for floating platforms, it is verified that the calculation of motion responses is reliable. Eventually, this study will provide a modular calculation process and help determine the hydrodynamic characteristics of wind floating wind platforms in engineering practice.

    目錄 摘要 I Extended Abstract II 致謝 XIV 目錄 XV 表目錄 XVII 圖目錄 XVIII 符號 XXVI 第一章緒論 1 1-1 研究動機與目的 1 1-2 文獻回顧 4 1-3 模組化系統介紹 6 1-4 流場可視化 13 1-5 架構及介紹 15 第二章 設計流程與數值方法 16 2-1設計流程 16 2-2理論背景 18 2-3 康明斯時域方程式(Cummins Time-Domain Equation) 26 2-4 波譜 29 第三章浮動式平台設定與其模擬介紹 30 3-1六個不同浮台之比較 38 3-2錨鍊系統 39 第四章流體動力係數分析 41 4-1 NREL/ MIT 張力腿式流體動力係數 42 4-2 UM張力腿式浮台之流體動力係數分析 46 4-3 OC3 Hywind與UM深水浮筒式浮台之流體動力係數分析 51 4-4 ITI駁船式浮台之流體動力係數分析 59 4-5 UM半潛式浮台之流體動力係數分析 64 第五章各類浮台共振因子RAO之分析 69 5-1張力腿式 RAO分析 70 5-2深水浮筒式 RAO分析 79 5-3 ITI駁船式 RAO分析 89 5-4 UM 半潛式 RAO分析 95 5-5綜合討論 100 第六章結論與未來展望 101 參考文獻 103

    參考文獻
    Aamo, O., Fossen, T., 2001. Finite element modelling of moored vessels. Mathematical and Computer Modelling of Dynamical Systems 7 (1), 47-75.
    Andersen, M.T., Hindhede, D., Lauridsen, J., 2015. Influence of model simplifications excitation force in surge for a floating foundation for offshore wind turbines. Energies 8 (4), 3212-3224.
    ASA, S., 2018. The market outlook for floating offshore wind.
    Barltrop, N.D., 1998. Floating Structures: a guide for design and analysis. Oilfield Pubns Inc.
    Berhault, C., Aanesland, V., Jensen, G., Caprino, G., Tumock, S., Larsson, L., Bertram, V., 1993. 19th WEGEMT School: Numerical Simulation of Hydrodynamics: Ships and Offshore Structures, 19th WEGEMT School: Numerical Simulation of Hydrodynamics: Ships and Offshore Structures.
    Butterfield, C.P., Musial, W., Jonkman, J., Sclavounos, P., Wayman, L., 2007a. Engineering challenges for floating offshore wind turbines. Citeseer.
    Butterfield, S., Musial, W., Jonkman, J., Sclavounos, P., 2007b. Engineering challenges for floating offshore wind turbines. National Renewable Energy Laboratory (NREL), Golden, CO.
    Chen, Z.-Z., Tarp-Johansen, N.J., Jensen, J.J., 2006. Mechanical characteristics of some deepwater floater designs for offshore wind turbines. Wind Engineering 30 (5), 417-430.
    Council, G.W.E., 2016. Global Wind Statistics 2016, 10 February 2017. Brussels: Global Wind Energy Council.
    Cummins, W., 1962. The impulse response function and ship motions. DTIC Document.
    ETAP Balkan, N.M., Gazi Güçnar Sokak, Uygur İş Merkezi, No:4A, Beşiktaş, İstanbul 34340 TURKEY, Design and monitor wind farms in a flexible graphic interface optimized for wind power simulation and analysis.
    Europe, W., 2017. Floating Offshore Wind Vision Statement.
    Faltinsen, O., 1993. Sea loads on ships and offshore structures. Cambridge university press.
    Hall, M.T.J., 2013. Mooring line modelling and design optimization of floating offshore wind turbines.
    Heronemus, W.E., 1972. Pollution-Free energy from the offshore winds. Marine Technology Society.
    Hess, J.L., Smith, A., 1962. Calculation of non-lifting potential flow about arbitrary three-dimensional bodies. Douglas Aircraft Co Long Beach CA.
    James, R., Ros, M.C., 2015. Floating offshore wind: market and technology review. The Carbon Trust.
    Matha, D., 2010. Model Development and Loads Analysis of an Offshore Wind Turbine on a Tension Leg Platform with a Comparison to Other Floating Turbine Concepts: April 2009. National Renewable Energy Laboratory (NREL), Golden, CO.
    Ralston, A., Reilly, E.D., Hemmendinger, D., 2000. Encyclopedia of computer science. Nature Publishing Group.
    Robertson, A.N., Jonkman, J.M., 2011. Loads analysis of several offshore floating wind turbine concepts, The Twenty-first International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers.
    Shim, S., Kim, M., 2008. Rotor-floater-tether coupled dynamic analysis of offshore floating wind turbines, The Eighteenth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers.
    Veritas, D.N., 2013. DNV-OS-J103: Design of Floating Wind Turbine Structures.
    Workshop, C.D., 2016. Floating Wind Turbine Design Loads.
    Yeh, T.-H., Wang, L., 2008. A study on generator capacity for wind turbines under various tower heights and rated wind speeds using Weibull distribution. IEEE Transactions on Energy Conversion 23 (2), 592-602.
    陳芙靜, 2017. 離岸風力機漂浮式平台技術發展趨勢.
    陳韻茹, 2006. 船體繫泊系統之動態模擬. 成功大學系統及船舶機電工程學系學位論文, 1-196.

    下載圖示 校內:2021-01-01公開
    校外:2021-01-01公開
    QR CODE