| 研究生: |
黃鈺軒 Huang, Yu-Shiuan |
|---|---|
| 論文名稱: |
凝聚性沙質在水體沉降過程之研究 Settling process behavior of cohesive sediment under quiescent water |
| 指導教授: |
黃煌煇
Hwung, Hwung-Hweng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 高嶺土 、泥水交界面 、濁度計 、泥水混合濃度 、沉降速度 |
| 外文關鍵詞: | optical backscatter sensors, settling velocity, cohesive sediment, concentration gradient, acoustic backscatter system, suspended sediment concentration |
| 相關次數: | 點閱:162 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要以實驗的方式來觀測於不同初始泥水混合濃度條件下中的沉降過程。由初始泥水混合濃度估算出濃度的變化速度。除了運用在水庫上,本文亦希望了解整個沉降機制可以運用處理泥砂運動、解決海岸的流失以及港口淤泥等問題。
本文採用高嶺土做為本實驗泥質,於邊長0.8 cm的方形水槽,利用沒水式馬達調製出均勻的濃度環境下進行不同初始泥水混合濃度條件下的沉降實驗,運用ABS聲學儀器來量測沉降過程出現的泥水交界面的變化,估算出泥水交界面的速度,得到於低濃度時交界面的沉降速度會隨濃度增加而變快,直到濃度達到3000 mg/l其沉降速度會隨濃度增加而下降。本實驗於不同的位置設置六根濁度計用來量測垂直濃度剖面的變化,量測結果得到於濃度2000mg/l以下時交界面未出現,直到濃度條件為2000mg/l ~ 3000mg/l會出現較不明顯的交界面,濃度條件達3000mg/l以上時則會出現較明顯的泥水交界面,與ABS的結果相對應,故本文定義濃度條件達3000mg/l才會出現較明顯的泥水交界面。由濁度計所量測的垂直濃度剖面的結果運用質量守恆的概念計算出沉降速度。
根據ABS量測到的不連續交界面出現的時間及位置計算出最大梯度值得知在不同的初始濃度條件下整個空間的最大梯度分布會呈現不同的趨勢,依初始濃度條件分類可分成濃度為2000 mg/l ~ 2500 mg/l、2800 mg/l ~ 3500 mg/l、3500 mg/l ~ 5500 mg/l及5500 mg/l ~ 13000 mg/l共四種型態。
關鍵詞:高嶺土,沉降速度,泥水混合濃度,泥水交界面,濁度計
The experimental studies is focused research on the settling process with different suspended sediment concentration (SSC).Although settling velocity depends mainly on initial SSC. Settling behavior and distribution of concentration are also affected by the intensity of concentration gradient.
Kaolinite is used as bed material, which is typical cohesive sediment. The experiment is conducted in a square tank with length of 0.8 m, equipped with two smbmerged pumps. Six optical backscatter sensors (OBS) were used to monitor the change of suspended sediment concentration (SSC) at different levels. Time-averaged settling velocity was determined by depth-integrated mass balance equation from OBS. Additionally, acoustic backscatter system (ABS) was used to provide clear insight of interface, and the movement of interface will be used to determine fall speed. The result has shown that settling velocity increases with SSC in the enhanced settling velocity of SSC < 3000 mg/l and then decreases. From the result of OBS, interface didn’t appear in SSC < 2000 mg/l. The transition region ranges from 2000 mg/l ~ 3000 mg/l, and finally appear in SSC > 3000 mg/l. We define that when SSC is bigger than 3000 mg/l, there exist a interface. Furthermore, the similarlities of greatest concentration gradient distribution and the initial concentration are observed in our experiment.
KEYWORDS: cohesive sediment, suspended sediment concentration, settling velocity, concentration gradient, optical backscatter sensors, acoustic backscatter system
1. Eisma, E., Dyer, K.R. and van Leussen, W, "The in-situ determination of the settling velocity of suspended fine-grained sediment - a review," In N. Burt, R. Parker and J. Watrts (eds.), Cohesive Sediments, John Wiley and Sons,1997
2. Erik A. Toorman and Jean E. Berlamont, "Mathermatical Modeling of Cohesive Sediment Settling and Consolidation, " Nearshore and Estuarine Cohesive Sediment Transport, pp.167~183,1993
3. Fugate, D.C and Friedrichs, C.T, "Determining concentration and fall velocity of estuarine particle population using ADV,OBS and LISST, " Continental Shelf Research, 22(11-13), pp. 2867-1886, 2002
4. Kynch, G., " A theory of sedimentation, " Transactions of the Faraday Society 48, pp.166-17, 1952.
5. Mehta, A., "Characterisation of cohesive sediment properties and transport processes in estuaries. In: Mehta, A. (Ed.), Estuarine Cohesive Sediment Dynamics, " Lecture Notes in Coastal and Estuarine Studies. Springer, Berlin, pp. 290–325, 1986
6. Mikkelsen, O.A. and Pejrup, M, "The use of a Lisst-100 laser particle sizer for in-situ estimeates of floc size, density and settling velocity, " Geo-Marine Letters, 2001
7. Manning, A.J., Bass, S.J. and Dyer, K.R, "Variability in cohesive sediment settling fluxes: Observations under different estuarine tidal conditions, " Marine Geology 235, pp. 177–192, 2006
8. Mantovanelli, A., Ridd, P.V., "Devices to measure settling velocities of cohesive sediment aggregates: a review of the in situ technology," J. of Sea Research 56(3), pp. 199-226, 2006
9. Maa, Jerome P.-Y. and Kwon, J.-I, "Using ADV for Cohesive Sediment Settling Velocity Measurements, Estuarine, Coastal and Shelf ," Science, 73, pp. 351-354, 2007
10. Owen, M.W., "Determination of the Settling Velocities of Cohesive Muds, " Report No. IT 161, Hydraulic Research Station, Wallingford, 1976
11. Stokes, G.G., "On the effect of the internal friction of fluids on the motion of pendulums," Transactions Cambridge Philosophical Society IX, pp 8–106, 1851 (Reprinted in Mathematical and Physical Papers, 2nd Ed., Vol. 3, Johnson Reprint Corp., New York, p1, 1966).
12. Wit, P.J., "Liquefaction and erosion of mud due to waves and current. Tech. rept, " Delft University of Technology, pp 10-92, 1992
13. You, Z.J., "The effect of suspended sediment concentration on the settling velocity of cohesive sediment in quiescent water, " Ocean Engineering, Vol 31, pp 1955-1965, 2004