| 研究生: |
吳行悌 Wu, Hsing-Ti |
|---|---|
| 論文名稱: |
風況之辨識與集群分析及其嵌入結構與其它氣象特徵之關聯性研究 Pattern Recognition and Cluster Analysis of Wind and its Structure-Embedded Association with Other Meteorological Characteristics |
| 指導教授: |
莊士賢
Chuang, Laurence Z.H. |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 海洋科技與事務研究所 Institute of Ocean Technology and Marine Affairs |
| 論文出版年: | 2015 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 風況 、最小橢圓 、幾何資料雲 、資料機制 、結構嵌入式關聯 |
| 外文關鍵詞: | wind patterns, minimum ellipse, data cloud geometry, data mechanics, structure-embedded association |
| 相關次數: | 點閱:124 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣帆船活動日漸發達,對於活動場址之風況掌握的需求更顯得急迫。風速和風向這兩個氣象因子不只是帆船活動的關鍵因素,對於成功的帆船賽事管理更是具有同等重要性,因此有必要對這兩個氣象特性有清楚的認識。澎湖自1999年開始有帆船競賽的發展,而且其規模逐步由國內層級擴展為國際層級。本研究發展了一個最小橢圓計算法,並以2011年澎湖海氣象浮標於澎湖海面觀測的逐時風力與風向為例,將每日24小時的逐時風力與風向資料摘要成為一個僅剩5個參數的最小橢圓。最小橢圓法的應用價值可由本文的三個分析案例來說明,分別是:(1)檢視颱風期間的風況隨颱風軌跡之變化、(2)提供一個篩選海陸風盛行日的簡單方法、及(3)針對帆船賽事規劃所做的全年風況分布圖。
透過最小橢圓的計算結果,我們可以進一步計算全年日風況的相似性矩陣,接著採用本研究引入的「幾何資料雲」群集分析法的計算,可將全年的逐日風況分類組織成一個階層式群集。幾何資料雲群集分析法提供多尺度的群集分析,比標準的階層式群集分析有更佳的量化表現,本研究透過實際資料所進行的全年風況群集分析再次驗證了幾何資料雲的優異特性。資料機制是本研究引入的另一個重要方法,其目的是將日風況的群集架構延伸至資料浮標所觀測的其他海氣象共變量資料。藉由資料機制的連結,我們得以計算內含風況架構的共變量距離矩陣,進而獲得共變量間的幾何資料雲群集。利用此資料雲群集,我們得以再次利用資料機制來計算含有風況資訊的逐日海氣象共變量之距離矩陣,並依此計算逐日共變量之幾何資料雲群集,該群集在未提供日期資訊的情況下,其群集架構仍能精確捕捉海氣象的季節性變化特質。
本研究的最後工作是將海氣象共變量群集架構與風況群集架構耦合,以檢視其相關性,透過heatmap檢視其耦合的色塊非常明顯,這代表風況與其它氣象因子明顯相關。若以風況為應變數,其它氣象因子為因變數,進行近來頗為盛行的決策樹分析,將決策樹之結果與風況群集偶合,可同樣透過heatmap檢視其關連性。我們發現以幾何資料雲所建立的耦合結構與決策樹有同等的預測效力,但其整體架構比決策樹更具一致性,且避免了決策樹經常為人詬病的過度配適問題。
As interest in sailing has increased in Taiwan, it has become essential to understand wind patterns in order to better organize sailing events. Penghu began to organize sail regatta in 1999 and extended the scale of their regatta from the national level to the international level. Knowledge of both wind speed and wind direction is equally critical to successful regatta management. In this dissertation, wind speed and wind direction observed in 2011 from the Penghu data buoy are used as an example. A simple computational method was developed to summarize 24 hours of observation into a minimum ellipse with only five parameters. This summarized daily ellipse reduces the dimensions of the problem efficiently but still retains hourly information. We demonstrate herein that this minimum ellipse computational method can be applied in at least three ways: (1) tracking the wind pattern trajectory of a typhoon, (2) providing a simple method to distinguish land-and-sea breeze days, and (3) visually exhibiting the global wind pattern for the planning of sailing events.
Based on the results of the minimum ellipse, daily wind patterns can be summarized, and cluster analysis on a daily basis can be performed. An important clustering technique, called a data cloud geometry-tree (DCG-tree) is introduced in this dissertation. The DCG-tree clustering method provides better quantification of the multi-scale geometric structures of the data under consideration than the standard Hierarchical Clustering method. This property was verified from real data by clustering daily wind patterns in Penghu.
The data mechanics method is another important concept which provides a tree structure-embedded linkage between the daily wind clusters and other meteorological covariates which were also observed from the data buoy in Penghu. The DCG-tree was used again to build the hierarchical structure of the relationships within the covariates which retain the information from daily wind pattern clusters. With the tree structure of these covariates, data mechanics was used to define the pairwise daily similarity from the point of view of the covariates. We then coupled the daily wind cluster with the daily covariate clusters. The coupling results indicated significant associations between these two types of meteorological characteristics. Taking into consideration predictions from the covariates to the wind patterns, the relationship built by the DCG-tree and data mechanics exhibited the same performance as that of the recently popular decision tree method. However, it provided more insight into the system dynamics and avoided the usual overfitting criticism lodged toward decision trees.
ARNOTT, J. M., EVANS, J. L. & CHIAROMONTE, F. 2004. Characterization of extratropical transition using cluster analysis. Monthly Weather Review, 132, 2916-2937.
AZORIN-MOLINA, C., TIJM, S. & CHEN, D. L. 2011. Development of selection algorithms and databases for sea breeze studies. Theoretical and Applied Climatology, 106, 531-546.
BARDEN, T. & BINNS, J. On the road to establishing ventilation probability for Moth sailing dinghies. 18th Australasian Fluid Mechanics Conference, 2012. 394-397.
BEAVER, S. & PALAZOGLU, A. 2006. Cluster analysis of hourly wind measurements to reveal synoptic regimes affecting air quality. Journal of Applied Meteorology and Climatology, 45, 1710-1726.
BRECKLING, J. 1989. The analysis of directional time series: applications to wind speed and direction, New York, Springer-Verlag.
BREIMAN, L., FRIEDMAN, J., STONE, C. J. & OLSHEN, R. A. 1984. Classification and Regression Trees, Taylor & Francis.
CASSON, L. Speed under sail of ancient ships. Transactions and Proceedings of the American Philological Association, 1951. JSTOR, 136-148.
COIFMAN, R. R. & LAFON, S. 2006. Diffusion maps. Applied and Computational Harmonic Analysis, 21, 5-30.
COLAK, I., SAGIROGLU, S. & YESILBUDAK, M. 2012. Data mining and wind power prediction: A literature review. Renewable Energy, 46, 241-247.
CROONENBROECK, C. & AMBACH, D. 2015. A selection of time series models for short- to medium-term wind power forecasting. Journal of Wind Engineering and Industrial Aerodynamics, 136, 201-210.
CRUTCHER, H. L. & BAER, L. 1962. Computations from Elliptical Wind Distribution Statistics. Journal of Applied Meteorology, 1, 522-530.
DARBY, L. S. 2005. Cluster analysis of surface winds in Houston, Texas, and the impact of wind patterns on ozone. Journal of Applied Meteorology, 44, 1788-1806.
EVERITT, B. S., LANDAU, S., LEESE, M. & STAHL, D. 2011. Cluster Analysis, Wiley.
FOLEY, A. M., LEAHY, P. G., MARVUGLIA, A. & MCKEOGH, E. J. 2012. Current methods and advances in forecasting of wind power generation. Renewable Energy, 37, 1-8.
FUSHING, H. & CHEN, C. 2014. Data Mechanics and Coupling Geometry on Binary Bipartite Networks. Plos One, 9.
FUSHING, H. & MCASSEY, M. P. 2010. Time, temperature, and data cloud geometry. Physical Review E, 82.
FUSHING, H., WANG, H., VANDERWAAL, K., MCCOWAN, B. & KOEHL, P. 2013. Multi-Scale Clustering by Building a Robust and Self Correcting Ultrametric Topology on Data Points. Plos One, 8.
GILHOUSEN, D. B. 1987. A Field Evaluation of NDBC Moored Buoy Winds. Journal of Atmospheric and Oceanic Technology, 4, 94-104.
GOMEZ-MUNOZ, V. M. & PORTA-GANDARA, M. A. 2002. Local wind patterns for modeling renewable energy systems by means of cluster analysis techniques. Renewable Energy, 25, 171-182.
HARTIGAN, J. A. 1975. Clustering algorithms, Wiley.
HOTHORN, T., HORNIK, K. & ZEILEIS, A. 2006. Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics, 15, 651-674.
HU, Q., SU, P., YU, D. & LIU, J. 2014. Pattern-Based Wind Speed Prediction Based on Generalized Principal Component Analysis. Ieee Transactions on Sustainable Energy, 5, 866-874.
HUFFAKER, R. & BITTELLI, M. 2015. A Nonlinear Dynamics Approach for Incorporating Wind-Speed Patterns into Wind-Power Project Evaluation. Plos One, 10.
HUNG, C.-H. 2006. On the Advantage of Reaching on the Historical Sea-Route between Tayouan and Amoy (in Chinese). Journal of Architecture, 107-132.
HUTH, R., BECK, C., PHILIPP, A., DEMUZERE, M., USTRNUL, Z., CAHYNOVA, M., KYSELY, J. & TVEITO, O. E. 2008. Classifications of Atmospheric Circulation Patterns Recent Advances and Applications. In: GIMENO, L., GARCIAHERRERA, R. & TRIGO, R. M. (eds.) Trends and Directions in Climate Research.
INATSU, M. & AMADA, S. 2013. Dynamics and Geometry of Extratropical Cyclones in the Upper Troposphere by a Neighbor Enclosed Area Tracking Algorithm. Journal of Climate, 26, 8641-8653.
INTERNATIONAL SAILING FEDERATION 2011. Race Management Policies for the Olympic Sailing Competition and ISAF Events, UK.
JOHNSON, S. 1967. Hierarchical clustering schemes. Psychometrika, 32, 241-254.
KALOGEROMITROS, A., TSANGARIS, H., BILALIS, D. & KARABINIS, A. 2002. Severe accidents due to windsurfing in the Aegean Sea. European Journal of Emergency Medicine, 9, 149-154.
KAUFMANN, P. & WHITEMAN, C. D. 1999. Cluster-analysis classification of wintertime wind patterns in the Grand Canyon region. Journal of Applied Meteorology, 38, 1131-1147.
KLAUSNER, Z. & FATTAL, E. 2011. An objective and automatic method for identification of pattern changes in wind direction time series. International Journal of Climatology, 31, 783-790.
LAI, E. S. 2010. Chasing After The Wind: From Athens To Qingdao. HONG KONG METEOROLOGICAL SOCIETY, 20, 39.
LEE, H. G., PIAO, M. & SHIN, Y. H. 2015. Wind Power Pattern Forecasting Based on Projected Clustering and Classification Methods. Etri Journal, 37, 283-294.
LEE, M.-J. 2007. Comparing Participant's Recreational Motivations in International Sailboat Race-A Case of Adecco Taiwan Corona King of Wind Sailing Regatta (49er) in Penghu (in Chinese). Journal of Sport and Recreation Research, 2, 55-69.
LORENTE-PLAZAS, R., MONTAVEZ, J. P., JIMENEZ, P. A., JEREZ, S., GOMEZ-NAVARRO, J. J., GARCIA-VALERO, J. A. & JIMENEZ-GUERRERO, P. 2015. Characterization of surface winds over the Iberian Peninsula. International Journal of Climatology, 35, 1007-1026.
LYDIA, M., KUMAR, S. S., SELVAKUMAR, A. I. & KUMAR, G. E. P. 2015. Wind resource estimation using wind speed and power curve models. Renewable Energy, 83, 425-434.
MA, Y., GAO, R. Z., XUE, Y. C., YANG, Y. Q., WANG, X. Y., LIU, B., XU, X. L., LIU, X. Z., HOU, J. W. & LIN, H. 2013. Weather Support for the 2008 Olympic and Paralympic Sailing Events. Advances in Meteorology, 2013, 7.
MITSUTA, Y. & FUJII, T. 1987. Analysis and synthesis of typhoon wind pattern over Japan.
P REZ-FOGUET, A. 2014. Characterization of local wind patterns in complex mountain valleys. International Journal of Climatology, 34, 1741-1759.
PANARIO, D. & PINEIRO, G. 1997. Vulnerability of oceanic dune systems under wind pattern change scenarios in Uruguay. Climate Research, 9, 67-72.
POWELL, M. D. 1993. Wind forecasting for yacht racing at the 1991 Pan American Games. Bulletin of the American Meteorological Society, 74, 5-16.
POWELL, M. D. & RINARD, S. K. 1998. Marine forecasting at the 1996 Centennial Olympic Games. Weather and Forecasting, 13, 764-782.
R CORE TEAM 2013. R: A language and environment for statistical computing. Vienna, Austria.: R Foundation for Statistical Computing.
RAMSEY, N. 2013. Learning to Fly. Sports Illustrated, 119, 124.
RATTO, G., BERRI, G. J. & MARONNA, R. 2014. On the application of hierarchical cluster analysis for synthesizing low-level wind fields obtained with a mesoscale boundary layer model. Meteorological Applications, 21, 708-716.
RATTO, G., MARONNA, R. & BERRI, G. 2010. Analysis of Wind Roses Using Hierarchical Cluster and Multidimensional Scaling Analysis at La Plata, Argentina. Boundary-Layer Meteorology, 137, 477-492.
RICHARDS, P., JOHNSON, A. & STANTON, A. 2001. America's Cup downwind sails—vertical wings or horizontal parachutes? Journal of Wind Engineering and Industrial Aerodynamics, 89, 1565-1577.
ROMESBURG, C. 2004. Cluster Analysis for Researchers, Lulu.com.
SFETSOS, A. 2000. A comparison of various forecasting techniques applied to mean hourly wind speed time series. Renewable Energy, 21, 23-35.
SHI, Y. & ZHANG, L. 2011. COID: A cluster–outlier iterative detection approach to multi-dimensional data analysis. Knowledge and information systems, 28, 709-733.
SHU, Z. R., LI, Q. S. & CHAN, P. W. 2015. Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function. Applied Energy, 156, 362-373.
SPARK, E. & CONNOR, G. J. 2004. Wind forecasting for the sailing events at the Sydney 2000 Olympic and Paralympic Games. Weather and Forecasting, 19, 181-199.
VERITAS, N. 1991. Environmental conditions and environmental loads, Det Norske Veritas.
WALKER, S. H. & LITTLE, C. H. 1991. The Tactics of Small Boat Racing, W. W. Norton, Incorporated.
WANG, C., LU, Z. & QIAO, Y. Modeling of wind pattern and its application in wind speed forecasting. Sustainable Power Generation and Supply, 2009. SUPERGEN'09. International Conference on, 2009. IEEE, 1-6.
WANG, M.-J., ZHANG, X.-L. & LI, X.-R. 2010. Analysis of Meteorological Conditions for the Base of Marine Sports in the 26th Summer Universiade in Shenzhen in 2011. Journal of Tropical Meteorology, 26, 218-222.
WARE, C., KELLEY, J. G. W. & PILAR, D. 2014. IMPROVING THE DISPLAY OF WIND PATTERNS AND OCEAN CURRENTS. Bulletin of the American Meteorological Society, 95, 1573-1581.
WHITEWRIGHT, J. 2007. How fast is fast? Technology, trade and speed under sail in the Roman Red Sea.
WHYTE, C., SWAN, S. & DAVIDSON, K. 2014. Changing wind patterns linked to unusually high Dinophysis blooms around the Shetland Islands, Scotland. Harmful Algae, 39, 365-373.
WU, H.-T., CHUANG, L. Z. H. & WU, L.-C. 2012. Evaluation of weather conditions for sailing activity: A case study of Dapeng Bay Scenic Area, Taiwan (in Chinese). Journal of Island Tourism Research, 5, 1-17.
WU, T. F., QIN, B. Q., BROOKES, J. D., SHI, K., ZHU, G. W., ZHU, M. Y., YAN, W. M. & WANG, Z. 2015. The influence of changes in wind patterns on the areal extension of surface cyanobacterial blooms in a large shallow lake in China. Science of the Total Environment, 518, 24-30.
XIAOLIANG, H. G. X. 2006. The Weather and Climate Background During the Olympic Sailing in Qingdao. Journal of Applied Meteorological Science, S1.
YANG, Z.-H. & WANG, C.-T. 2006. A study of water recreation and sport development in Taiwan-an example from sailing (in Chinese). Jounal of Phsical Education National Pingtung University, 244-258.
YAO, C. C. & CHEN, Y. T. 2012. Classifying scaled and rotated textures using a region-matched algorithm. Optical Engineering, 51, 15.