簡易檢索 / 詳目顯示

研究生: 陳富農
Chen, Fu-Nung
論文名稱: 應用表面粗化技術增加光電流於砷化鎵太陽能電池之研究
Investigation of the enhancement on photo-current by surface texture for GaAs solar cell
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 91
中文關鍵詞: 太陽能電池圖形砷化鎵
外文關鍵詞: sphere, solar cell, pattern, GaAs
相關次數: 點閱:63下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文主要研究利用有機金屬氣相沉積法成長III-V 族太陽能電池,所使用的結構有p-n 與p-i-n 接面,並探討砷化鎵本質層的成長溫度對效率的影響,我們發現溫度大約在675度時,有最佳的轉換效率.並且研究成長在砷化鎵太陽能池上的capping層與window層對吸收太陽光與效率的影響。接著我們在製作太陽能電池過程中,我們使用不同圖形的正電極,討論電極的金屬面積與光轉換效率的關係,以及改變不同指狀電極相隔的間距,探討其與效率的關係。我們發現間距的影響不大,主要為遮光面機會降低大部分的效率,本篇研究最佳的金屬面積為12.7%。接著在製程中,我們使用兩種材料當抗反射層,材料分別為SiO2與Ta2O5。研究結果,抗反射層確實增加了光電流,卻降低了開路電壓,使得效率下降。而且所鍍的材料皆為不可逆的製程,在商業上製程失敗會使得成本提高。
    故本研究利用材料為polystyrene的奈米球其週期性排列,應用在砷化鎵的抗反射層上,奈米球的週期性排列形成粗糙表面的抗反射層,它的優點包含降低抗反射並且增加光路徑、製程快速與成本低廉。我們利用旋轉塗佈機使得奈米球週期性排列,探討奈米球溶液、塗佈的轉速與時間造成奈米球鋪排的結果,最後我們得到單層大面積的奈米球鋪排,量其反射率發現它有光子晶體現象,光子晶體使得反射率上升。我們將單層不同大小的奈米球應用在砷化鎵太陽能電池上,探討奈米球尺寸對轉換效率的影響,利用尺寸500nm的奈米球可以相對增加18%的轉換效率。最後利用spin-on glass(SOG)的技術,解決奈米球之間有空隙的問題。結果可以相對增加27%的轉換效率。

    In this thesis, we have successfully fabricated and investigated GaAs-based solar cells using p-n and p-i-n structure. We further optimize growth temperature of i-GaAs absorption layer. The window layer and capping layer of GaAs solar cell structure are discussed. And we used different front contact pattern to discuss the effect of shadow area on conversion efficiency. Then we used two materials to deposit anti-reflection coating, the material included SiO2 and Ta2O5. We varied the thickness of anti-reflection coating to find the best result.
    In this study, we also used a period nano-sphere to be an anti-reflection coating. The nano-sphere coating layer is coated by spin coat and the material of nano-sphere is polystyrene. We discussed the parameters of spin including the consistency, spin speed and spin time to get mono-layer nano-sphere on GaAs substrate. And we investigated the optical characteristic of nano-sphere on GaAs surface. Finally, we applied the nano-sphere to be anti-reflection coating on GaAs solar cell. The effect and result for GaAs solar cell with nano-sphere coating are discussed. Then we used SOG to spin on nano-sphere. The SOG is a spin-on glass technique to coating a thin layer. It improved the problem of space between the spheres. And we succeed to apply the polystyrene with SOG for GaAs solar cell. The relative conversion efficiency can improved to about 27%.

    Content Abstract (In Chinese) I Abstract (In English) III Acknowledgement V Figure caption IX Table caption XII Chapter 1 Introduction 1 1.1 Introduction and progress of GaAs-based solar cells 1 1.1.1 Introduction of solar cell 1 1.1.2 History and background 1 1.1.3 Materials of solar cells 2 1.2 Motivation 3 1.3 Organization of this thesis 4 Chapter 2 Theory Foundation 5 2.1 Device physics 5 2.1.1 Window layer 5 2.1.2 The photo-electro characteristic of GaAs solar cell 6 2.2 Equipment 8 2.2.1 Metalorganic Vapor Phase Epitaxy (MOVPE) 8 2.2.2 Solar simulator 9 2.2.3 Solar response system 9 Chapter 3 GaAs solar cell grown by MOVPE 15 3.1 Introduction 15 3.2 MOCVD epitaxy of GaAs solar cell with various structures 15 3.2.1 MOCVD epi GaAs solar cell with various structures 15 3.2.2 MOCVD epitaxy of GaAs solar cell with different temperature 16 3.3 The effects of the capping layer and window layer on GaAs solar cell 17 3.4 Summary 18 Chapter 4 Fabrication of GaAs solar cell 29 4.1 Introduction 29 4.2 Procedure of solar cell process 29 4.3 The pattern of front contact effects 31 4.4 The properties of solar cell with anti-reflection coating (ARC) 32 4.5 Summary 34 Chapter 5 Improving efficiency of GaAs solar cell by textured-surface method 46 5.1 Introduction 46 5.2 Spinning of nano-sphere on GaAs substrate 47 5.2.1 Spin coating method 47 5.2.2 The optical property of nano-spheres 49 5.2.3 Discussion of nano-spheres and photonic band-gap 49 5.3 Nano-sphere layers on GaAs solar cell 51 5.3.1 Structure and process 51 5.3.2 Result and discussion 52 5.4 Nano-spheres with spin-on glass on GaAs solar cell 55 5.4.1 Process 55 5.4.2 Measurement and result 55 5.5 Summary 57 Chapter 6 Conclusion and future work 86 6-1 Conclusion 86 6-2 Future work 87 Reference 88

    Chapter1
    [1.1] M. Konagai, M. Sugimoto, and K. Takahashi, “High efficiency GaAs thin film solar cells by peeled film technology,” J. Cryst. Growth, vol. 45, pp. 277-280, 1978.
    [1.2] M. Yamaguchi, C. Amano, H. Sugiura, A. Yamamoto, “High efficiency AlGaAs-GaAs tandem solar cells with tunnel junction,” in Proc. IEEE 19th Photovoltaic Specialists Conf., New York, pp. 1484-1485, 1987.
    [1.3] M. Yamaguchi, C. Amano, H. Sugiura, A. Yamamoto, “High efficiency AlGaAs-GaAs tandem solar cells with tunnel junction,” in Proc. IEEE 19th Photovoltaic Specialists Conf., New York, pp. 1484-1485, 1987.
    [1.4] J. Zhao, A. Wang, and M. A. Green,"19.8% efficient hinycomb textured multicrystalline and 24.4% monocrystalline silicon solar cells,"Applied Physics Letters, Vol. 73, pp. 1991-1993, 1998
    [1.5] M. F. Piszczor, S. White, M. Douglas, B. Spence, P.A. Jones, “Development of an ultraflex-based thin film solar array for space applications,” in Proc. 3rd World Conf. Photovoltaic solar Energy Conversion, pp. 793-796, 2003.
    [1.7] M. Yamaguchi, and A. Luque, “High efficiency and high concentration in photovoltaics,” IEEE Trans. Electron Devices, vol. 46, no. 10, pp. 2139-2144, 1999.

    Chapter 2
    [2.1] W Shockley and W T Read Jr., Statistics of recombination of holes and electrons., Phys Rev., 87, pp835-842 (1952); R N Hall, Germanium rectifier characteristics, Phys. Rev., 83, p228 (1951)
    [2.2] D Huber and K Bogus, GaAs solar cells with AlAs windows, Conf. Rec. 10th IEEE PV Specialists Conf (1973).
    [2.3] W Shockley, “The theory of p-n junctions in semiconductors and p-n junction transistors,” Bell Syst. Tech. J., vol. 28, p. 435, 1949.
    [2.4] B. Burnett, The basic physics and Design of III-V Multijunction Solar cells. 2002.
    [2.5] M. A. Green, Solar cells operating Principles, Technology, and System Application. Prentice-Hall, Inc., Englewood Cliffs, 1982.
    [2.6] S. M. Sze, Semiconductor Devices: Phusics and Technology. John Wiley & Sons, Inc., p.289, 2001.
    [2.7] S. Silvestre, L. Sentis, and L. Castaner “A Fast Low-Cost Solar Cell Spectral Response” IEEE Transactions on Instrumentation and Measurement, vol. 48, No. 5, pp. 944-948, 1999.
    [2.8] H. Mackel and A. Cuevas “Capturing the spectral response of solar cells with a quasi-steady” Prog. Photovolt: Res. Appl., vol. 14, pp. 203-212, 2006.
    [2.9] L. Philippe Boivin, Wolfgang Budde, C. X. Dodd, and S. R. Das “Spectral response measurement apparatus for large area solar cells” Applied Optics, vol. 25, No.16, pp. 2715-2719, 1986.
    [2.10] H. Field, “UV-VIS-IR Spectral Responsivity Measurement System for Solar Cells,” Presented at the National Center for Photovoltaics Program Review Meeting Denver, Colorado September 8-11, 1998.

    Chapter 3
    [3.1] G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and
    Practice. Academic Press, New York, 1989.
    [3.2] P. M. Petroff, “Nucleation and growth of GaAs on Ge and the structure of antiphase boundaries,” J. Vac. Sci. Technol. B vol. 4, pp. 874-877, 1986.
    [3.3] Pei-hsuan Wu ”An Investigation of GaAs-based Quantum Well Solar Cells Grown by MOVPE,” Optical and Science and Engineering, pp. 35 2007.
    Chapter 4
    [4.1] J. M. Olson, “Growth and characterization of high efficiency III−V multijunction solar cells for terrestrial and space applications,” 10th European Workshop on MOVPE, pp. 8-11, 2003.
    [4.2] T. Takamoto, T. Agui, K. Kamimura and M. Kaneiwa, “Multijunction solar cell technologies - high efficiency, radiation resistance, and concentrator applications,” in Proc. 3rd World Conf. Photovoltaic solar Energy Conversion, pp. 11-13, 2003.
    [4.3] Ipek Girgin KAVAKLI and Kayhan KANTARLI, Single and Double-Layer Antireflection Coating on Slicon, Turk J Phys 26, 2002

    Chapter 5
    [5.1] M. A. Green. “Two new efficient crystalline silicon light-trapping
    textures,” Prog. Photovolt. Res. Appl., vol. 7, no. 4, pp. 317-320, 1999.
    [5.2] F. C. Marques, “Sprayed SnO Antireflection Coating on Textured Silicon Surface for Solar Cell Applications,” IEEE Trans. Electron Devices, vol. 45, no. 7, pp.1619-1622, 1998.
    [5.3] M. Tao, W. Zhou, H. Yang, and L. Chen, “Surface texturing by solution depositionfor omnidirectional antireflection,” Appl. Phys. Lett., vol. 91, pp.081118-1-081118-3, 2007.
    [5.4] Jenny Nelson, THE PHYSICS OF SOLAR CELLS. Imperial College press p. 272, 2003.
    [5.5] Shuo Han, Zhibiao Hao,Jian Wang, and Yi Luo, "Controllable two-dimensional photonic crystal patterns fabricated by nanosphere lithography",J. Vac. Sci. Technol. 23, p. 1585 ,2005
    [5.6] Chia-Hua Chan, Chii-Chang Chen, Chih-Kai Huang, Wei-Hsiang Weng, Hung-Sen Wei, ”Self-assembled free-standing colloidal crystals”, INSTITUTE OF PHYSICS PUBLISHING Nanotechnology,16, pp.1440-1444, 2005.

    下載圖示 校內:2011-07-07公開
    校外:2014-07-07公開
    QR CODE