研究生: |
林龍星 Lin, Lung-Shing |
---|---|
論文名稱: |
具諧波注入機制之單開關三相式風能轉換器研製 Design and Implementation of Single-Switch Three-Phase Wind Power Converter with Harmonic Injection Mechanism |
指導教授: |
林瑞禮
Lin, Ray-Lee |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 150 |
中文關鍵詞: | 風力發電機 、功率因數修正電路 、最大功率追蹤 、諧波注入機制 |
外文關鍵詞: | wind turbine generator, power factor correction, maximum-power-point-tracking (MPPT), harmonic injection mechanism |
相關次數: | 點閱:108 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一具諧波注入機制之單開關三相式風能轉換器。在風力發電系統中,為了使風力發電機在不同風速下皆可操作在最大功率點上,因此需要一最大功率追蹤機制。再藉由一傳統單開關三相功率因數修正電路以提升功率因數。然而,傳統單開關三相功率因數修正電路之輸入電流具有較高的五次諧波成分,造成功率因數降低。
本論文提出一最大功率追蹤機制應用於傳統單開關三相功率因數修正電路上,使風力發電機在不同風速下皆可操作在最大功率點上。並搭配諧波注入機制,改善單開關三相轉換器之功率因數,提升風力發電系統之電能轉換效率。
最後,實作一1kW 雛型電路,以驗證本計畫所提之最大功率追蹤控制法,可使風力發電機之輸出功率操作在最大功率點。並藉由諧波注入機制,減少輸入電流五次
諧波成分,提升單開關三相轉換器之功率因數,實現一具最大功率追蹤控制與高功率因數之風能轉換器。
This thesis presents design and implementation of the single-switch three-phase wind power converter with harmonic injection mechanism. In order to obtain optimal output power of the wind turbine generator (WTG) at different wind speeds, a maximum-power-point-tracking (MPPT) mechanism is required. Furthermore, to improve the input power-factor of the wind energy conversion system (WECS), the conventional
single-switch three-phase boost rectifier is employed. However, the input current of the conventional single-switch boost rectifier exhibits a relatively large fifth-order harmonic, which leads to low input PF.
Therefore, in order to improve the conversion efficiency for WECS, a MPPT mechanism is employed and proposed in the single-switch three-phase boost rectifier. Moreover, the input fifth-order harmonic current of the single-switch boost rectifier can be reduced by adopting the harmonic injection mechanism.
Finally, a 1kW prototype circuit of the single-switch three-phase wind power converter is built to verify the performances using MPPT and harmonic injection
mechanisms.
[1] Y. Zhang, A. A. Chowdhury, and D. O. Koval, “Probabilistic wind energy modeling in electric generation system reliability assessment,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1507-1514, May/Jun. 2011.
[2] D. Ting, S. Bin, and S. S. Wen, “Study on the Wind Energy Resources Assessment in Wind Power Generation,” Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), pp. 6804-6807, Aug. 2011.
[3] (2012, Jun.). Renewables 2012 Global Status Report [Online].
Available: http://www.ren21.net
[4] (2012). The World Wind Energy Association: Half-year Report [Online].
Available: http://www.wwindea.org
[5] D. S. Zinger and E. Muljadi, “Annualized wind energy improvement using variable speeds”, IEEE Trans. Ind. Applicat., vol. 33, pp.1444-1447, 1997.
[6] E. Koutroulis and K. Kalaitzakis, “Design of a maximum power tracking system for wind-energy-conversion applications,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 486-494, Apr. 2006.
[7] A. M. De Broe, S. Droulhet, and V. Gevorgian, “A peak power tracker for small wind turbines in battery charging applications,” IEEE Trans. Energy Convers., vol. 14, no. 4, pp. 1630-1635, Dec. 1999.
[8] R. Chedid, F. Mrad, and M. Basma, “Intelligent control of a class of wind energy conversion systems,” IEEE Trans. Energy Convers., vol. 14, no. 4, pp. 1597-1604, Dec. 1999.
[9] K. S. M. Raza, H. Goto, H. Guo, and O. Ichinokura, “Maximum power point tracking control, and voltage regulation of a DC grid-tied wind energy conversion system based on a novel permanent magnet reluctance generator,” in Proc. Int. Conf. Electr. Mach. Syst., Seoul, Korea, Oct. 8-11, 2007, pp. 1533-1538.
[10] M. G. Simoes, B. K. Bose, and R. J. Spiegel, “Fuzzy logic based intelligent control of a variable speed cage machine wind generation system,” IEEE Trans. Power Electron., vol. 12, no. 1, pp. 87-95, Jan. 1997.
[11] M. Cirrincione, M. Pucci, and G. Vitale, “Growing neural gas (GNG) based maximum power point tracking for high performance VOC-FOC based wind generator system with induction machine,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 861-872, Mar./Apr. 2011.
[12] C. Liu , K. Chau and X. Zhang “An efficient wind-photovoltaic hybrid generation system using doubly-excited permanent-magnet brushless machine,” IEEE Trans. Ind. Electron., vol. 57, no. 3, pp.831-839, Mar. 2010.
[13] S. M. Barakati, M. Kazerani, and J. D. Aplevich, “Maximum power tracking control for a wind turbine system including a matrix converter,” IEEE Trans. Energy Convers., vol. 24, no. 3, pp. 705-713, Sep. 2009.
[14] S. Morimoto, H. Nakayama, M. Sanada, and Y. Takeda, “Sensorless output maximization control for variable-speed wind generation system using IPMSG,” IEEE Trans. Ind. Appl., vol. 41, no. 1, pp. 60-67, Jan./Feb. 2005.
[15] M. G. Simoes, B. K. Bose and R. J. Spiegel, “Design and performance of a fuzzy logic based variable speed wind generation system”, IEEE Trans. Ind. Appl., vol. 33, no. 4, pp. 956-965, Jul./Aug. 1997.
[16] F. S. dos Reis, K. Tan, and S. Islam, “Using PFC for harmonic mitigation in wind turbine energy conversion systems,” in Proc. 30th Annu. Conf. IEEE Ind. Electron. Soc., Busan, Korea, Nov. 2-6, 2004, pp. 3100-3105.
[17] Power Factor Correction (PFC) Handbook, Rev. 4, On Semiconductor○R, Feb. 2011.
[18] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: A survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-754, May 2003.
[19] H. Wei and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” in Proc. Southeastcon, Apr. 1998, pp. 348-353.
[20] G. Spiazzi and F. C. Lee, “Implementation of single-phase boost power-factor-correction circuits in three-phase application,” IEEE Trans. Ind. Electron., vol. 44, no. 3, pp. 365-371, Jun. 1997.
[21] Y. Jiang, H. Mao, F. C. Lee, and D. Borojevic, “Simple high performance three-phase boost rectifiers,” in Proc. IEEE Power Electron. Specialists Conf., Jun. 1994, pp. 1158-1163.
[22] G. Chen and K. Smedley, “Steady-state and dynamic study of one-cycle-controlled three-phase power-factor correction,” IEEE Trans. Ind. Electron., vol. 52, no. 2, pp. 355-362, Apr. 2005.
[23] C. Qiao and K. M. Smedley, “Unified constant-frequency integration control of three-phase standard bridge boost rectifiers with power-factor correction,” IEEE Trans. Ind. Electron., vol. 50, no. 1, pp. 100-107, Feb. 2003.
[24] H. Mao, D. Boroyevich, and F. C. Lee, “Analysis and design of high frequency three-phase boost rectifiers,” in Proc. IEEE APEC’96, vol. 2, San Jose, CA, Mar. 3-7, 1996, pp. 538-544.
[25] D. Yazdani, A. R. Bakhshai, and P. Jain, “A simple and efficient control strategy for three-phase boost rectifiers,” in Proc. Canadian Conf. Electrical and Computer Engineering, vol. 1, May 2003, pp. 409-412.
[26] H. Mao, F. C. Lee, D. Borojevieh, and S. Hiti, “Review of high-performance three-phase power-factor correction circuit,” IEEE Trans. lnd. Electron., vo1.44, no.4, pp. 437-446, Aug. 1997.
[27] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, Jun. 2004.
[28] A. R. Prasad, P. D. Ziogas, and S. Manias, “An active power factor correction technique for three-phase diode rectifiers,” IEEE Trans. Power Electron., vol. 6, no. 1, pp. 83-92, Jan. 1991.
[29] Y. Jang and M.M. Jovanovic, “A comparative study of single-switch three phase high-power-factor rectifiers,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp. 1327-1334, Nov./Dec. 1998.
[30] E. H. Ismail and R. Erickson, “Single-switch 3φ PWM low harmonic rectifiers,” IEEE Trans. Power Electron., vol. 11, no. 2, pp. 338-346, Mar. 1996.
[31] J. W. Kolar, H. Ertl, and F. C. Zach, “Space vector-based analytical analysis of the input current distortion of a three-phase discontinuous-mode boost rectifier system,” IEEE Trans. Power Electron., vol. 10, no. 6, pp. 733-745, Nov. 1995.
[32] D. S. L. Simonetti, J. L. F. Vieira and G. C. D. Sousa, “Modeling of the high-power factor discontinuous boost rectifier,” IEEE Trans. Ind. Electron., vol. 46, no. 4, pp. 788-795, Aug. 1999.
[33] Y. Jang and M. M. Jovanovic, “A novel, robust, harmonic injection method for single-switch, three-phase, discontinuous-conduction-mode boost rectifiers,” IEEE Trans. Power Electron., vol. 13, no. 5, pp. 824-834, Sep. 1998.
[34] Q. Huang and F. C. Lee, “Harmonic reduction in a single-switch, three-phase boost rectifier with high order harmonic injected PWM,” in Proc. IEEE Power Electron. Specialists’ Conf. (PESC) Rec., Jun. 1996, vol. 2, pp. 1266-1271.
[35] J. Sun, N. Frohleke, and H. Grotstollen, “Harmonic reduction techniques for single-switch three-phase boost rectifiers,” in Proc. IEEE IAS Annu. Meet. Rec., Oct. 1996, vol. 2, pp. 1225-1232.
[36] K. Schenk and S. Cuk, “A simple three-phase power factor corrector with improved harmonic distortion,” in Proc. IEEE PESC’97, 1997, pp. 399-405.
[37] Y. Jang and M.M. Jovanovic, “A comparative study of single-switch three phase high-power-factor rectifiers,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp. 1327-1334, Nov./Dec. 1998.
[38] LEM, “Current Transducer,” HY5-P datasheet, 2003.
[39] Texas Instruments, “Enhanced high power factor preregulator,” UC3854 datasheet, Jun. 1999.