簡易檢索 / 詳目顯示

研究生: 李依穎
Lee, Yi-Ying
論文名稱: 非接觸式感應饋電技術應用於可動機具之研究
Study of Contactless Power Transmission Techniques for Mobile Apparatuses
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 75
中文關鍵詞: 電能非接觸移動
外文關鍵詞: contactless, mobile, power
相關次數: 點閱:61下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文旨在利用非接觸感應饋電技術設計平面式感應饋電系統,所提系統涵括初級側電能感應電路、控制信號電路及次級側接收電路等三部份。其係藉由感應電能傳輸毋需電源線連接抑或金屬接點接觸之特性,對具移動性質之機具負載進行持續電能供給與訊號傳送。論文中規劃一用以產生均勻磁場之 13cm × 15cm初級感應線圈陣列,俾令其上具次級感應線圈之移動機具得藉以獲得持續能量供給。初級感應線圈陣列與次級感應線圈之配置與繞製,則係應用電磁模擬軟體MAXWELL®進行輔助分析與設計。經由實驗證明,本文所提平面式感應饋電系統確得令位於初級感應線圈陣列上方5 mm處之移動機具持續不間斷作動。

      This thesis presents a contactless power transmission system for mobile apparatuses. The proposed system comprises primary power inductive circuits, control signal circuits, and secondary receiver circuits. The contactless power transmission system transmits electrical energy and signal without electrical connection or physical contact between the source and mobile apparatuses. In this thesis, a 13 cm × 15 cm coil array is made, which is used to produce uniform magnetic field, therefore mobile apparatuses could constantly device electrical energy. MAXWELL® is used to analyze and design the inductive coil array. Finally, the performance of proposed contactless power transmission system was proved mobile apparatuses could move above 5 mm on the coil array.

              目錄                     頁數 中文摘要                 I 英文摘要                 II 誌謝                   III 目錄                   IV 圖目錄                  V 表目錄                  IX 第一章   緒論             1  1-1   研究背景與目的        1  1-2   研究方法           4  1-3   論文大綱           5 第二章   感應線圈基本特性分析     6  2-1   前言             6  2-2   感應線圈的基本動作原理    6  2-3   鐵芯特性分析         8  2-4   感應結構特性分析       10  2-5   感應線圈的非理想效應     16 第三章   平面式感應饋電系統      20  3-1   前言             20  3-2   系統架構規劃         20  3-3   感應線圈設計         23  3-4   感應線圈陣列         26  3-5   感應線圈陣列的驅動方式    32 第四章   硬體電路規劃與製作      34  4-1   前言             34  4-2   電路架構           34  4-3   初級側電能感應電路      35   4-3-1 D類半橋諧振電路       35   4-3-2 閉迴路控制電路        41   4-3-3 串聯諧振結構感應線圈陣列   45  4-4   控制信號電路         46  4-5   次級側接收電路        48  4-6   整體設計流程         50 第五章   模擬與實驗結果        53  5-1   前言             53  5-2   硬體電路製作         53  5-3   PSpice軟體模擬        58  5-4   實驗結果量測         60 第六章   結論與未來研究發展      66  6-1   結論             66  6-2   未來研究發展         67 參考文獻                 68 自傳                   75

    [1] K. Finkenzeller, RFID HANDBOOK. 2nd ed., Wiley, 2003.
    [2] B. J. Heeres, D. W. Novotny, D. M. Divan, and R. D. Lorenz, “Contactless underwater power delivery,” in Proc. IEEE PESC '94, 1994, vol. 1, pp. 418-423.
    [3] K. W. Klontz, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “Contactless power delivery system for mining applications,” IEEE Trans. Ind. Appl., vol. 31, no. 1, pp. 27-35, 1995.
    [4] Y. Jang and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, 2003.
    [5] B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, “Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 140-147, 2004.
    [6] Y. Jang and M. M. Jovanovic, “A new soft-switched contactless battery charger with robust local controllers,” in Proc. IEEE INTELEC’03, 2003, pp. 473-479.
    [7] K. Hatanaka, F. Sato, H. Matsuki, S. Kikuchi, J. Murakami, M. Kawase, and T. Satoh, “Power transmission of a desk with a cord-free power supply,” IEEE Trans. Magn., vol. 38, no. 5, pp. 3329-3331, 2002.
    [8] K. Hatanaka, F. Sato, H. Matsuki, S. Kikuchi, J. Murakami, M. Kawase, and T. Satoh, “Characteristics of the desk with cord-free power supply,” in Proc. IEEE INTERMAG’02, 2002, p. 6.
    [9] G. A. J. Elliott, J. T. Boys, and A. W. Green, “Magnetically coupled systems for power transfer to electric vehicles,” in Proc. IEEE PEDS’95, 1995, vol. 2, pp. 797-801.
    [10] H. Sakamoto, K. Harada, S. Washimiya, K. Takehara, Y. Matsuo, and F. Nakao, “Large air gap coupler for inductive charger,” IEEE Trans. Magn., vol. 35, no. 5, pp. 3526-3528, 1999.
    [11] H. Sakamoto, K. Harada, S. Washimiya, K. Takehara, Y. Matsuo, and F. Nakao, “Large air gap coupler for inductive charger,” in Proc. IEEE INTERMAG’99, 1999, p. 10.
    [12] H. Ayano, K. Yamamoto, N. Hino, and I. Yamato, “Highly efficient contactless electrical energy transmission system,” in Proc. IEEE IECON’02, 2002, vol. 2, pp. 1364-1369.
    [13] G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green, and J. T. Boys, “The design of a contact-less energy transfer system for a people mover system,” in Proc. PowerCon’00, 2000, vol. 1, pp.79-84.
    [14] S. Adachi, F. Sato, H. Matusuki, and S. Kikuchi, “Consideration on contactless power station with selfctive excitation to moving robot,” in Proc. IEEE INTERMAG’99, 1999, p. 14.
    [15] J. M. Barnard, J. A. Ferreira, and J. D. Van Wyk, “Linear contactless power transmission systems for harsh environments,” in Proc. IEEE AFRICON’96, 1996, pp. 711-714.
    [16] T. Hata and T. Ohmae, “Position detection method using induced voltage for battery charge on autonomous electric power supply system for vehicles,” in Proc. IEEE AMC’04, 2004, pp. 187-191.
    [17] J. T. Boys, G. A. Covic, and A. W. Green, “Stability and control of inductively coupled power transfer systems,” IEE Proc.-Electr. Power Appl., vol. 147, no. 1, pp. 37-43, 2000.
    [18] F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, and T. Satoh, “Stable energy transmission to moving loads utilizing new CLPS,” IEEE Trans. Magn. vol. 32, no. 5, pp. 5034-5036, 1996.
    [19] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148-157, 2004.
    [20] S. Adachi, F. Sato, S. Kikuchi, and H. Matsuki, “Consideration of contactless power station with selective excitation to moving robot,” IEEE Trans. Magn., vol. 34, no. 5, pp. 3583-3585, 1999.
    [21] B. M. Song, R. Kratz, and S. Gurol, “Contactless inductive power pickup system for Maglev applications,” in Proc. IAS’02, 2002, vol. 3, pp. 1586-1591.
    [22] A. Esser, “Contactless charging and communication for electric vehicles,” IEEE Ind. Appl. Mag., vol. 1, no. 6, pp. 4-11, 1995.
    [23] S. Adachi, F. Sato, H. Matusuki, and S. Kikuchi, “Consideration on contactless power station with selfctive excitation to moving robot,” in Proc. IEEE INTERMAG’99, 1999, p. 1.
    [24] F. Sato, J. Murakami, T. Suzuki, H. Matsuki, S. Kikuchi, K. Harakawa, H. Osada, and K. Seki, “Contactless energy transmission to mobile loads by CLPS-test driving of an EV with starter batteries,” IEEE Trans. Magn., vol. 33, no. 5, pp. 4203-4205, 1997.
    [25] A. W. Green and J. T. Boys, “10 kHz inductively coupled power transfer-concept and control,” in Proc. IEE PEVSD’94, 1994, pp. 694-699.
    [26] M. Takahashi, K. Watanabe, F. Sato, and H. Matsuki, “Signal transmission system for high frequency magnetic telemetry for an artificial heart,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2921-2924, 2001.
    [27] H. Matsuki, M. Shiiki, K. Murakami, and T. Yamamoto, “Investigation of coil geometry for transcutaneous energy transmission for artificial heart,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2406-2408, 1992.
    [28] F. Sato, T. Nomoto, G. Kano, H. Matsuki, and T. Sato, “A new contactless power-signal transmission device for implanted functional electrical stimulation (FES),” IEEE Trans. Magn., vol. 40, no. 4, pp. 2964-2966, 2004.
    [29] D. K. Cheng, Field and Wave Electromagnetics. 2nd ed., Addison-Wesley, 1989.
    [30] 近角聰信,磁性物理學,聯經出版事業有限公司,1964。
    [31] F. Sato, H. Matsuki, S. Kikuchi, T. Sato, H. Osada, and K. Seki, “A new meander type contactless power transmission system-active excitation with a characteristics of coil shape,” IEEE Trans. Magn., vol. 34, no. 4, pp. 2069-2071, 1998.
    [32] F. Sato, S. Adachi, H. Matsuki, and S. Kikuchi, “The optimum design of open magnetic circuit meander coil for contactless power station system,” in Proc. IEEE INTERMAG’99, 1999, p. 9.
    [33] J. Murakami, F. Sato, T. Watanabe, H. Matsuki, S. Kikuchi, K. Harakawa, and T. Staoh, “Consideration on cordless power station –contactless power transmission system,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5037-5039, 1996.
    [34] K. W. E. Cheng and Y. Lu, “Development of a contactless power converter,” in Proc. IEEE ICIT’02, 2002, vol. 2, pp. 786-791.
    [35] N. Xi and C. R. Sullivan, “An improved calculation of proximity-effect loss in high-frequency windings of round conductors, ” in Proc. IEEE PESC’03, 2003, vol. 2, pp. 853-860.
    [36] J. A. Ferreira, “Improved analytical modeling of conductive losses in magnetic components,” IEEE Trans. Power Electron., vol. 9, no. 1, pp. 127-131, 1994.
    [37] N. Xi and C. R. Sullivan, “Simplified High-Accuracy Calculation of Eddy-Current Loss in Round-Wire Windings,” in Proc. IEEE PESC’04, 2004, vol. 2, pp. 873-879.
    [38] S. Eroglu, G. Friedman, and R. L. Magin, “Estimate of losses and signal-to-noise ratio in planar inductive micro-coil detectors used for NMR,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2787-2789, 2001.
    [39] A. W. Lotfi, P. M. Gradzki, and F. C. Lee, “Proximity effects in coils for high frequency power applications,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2169-2171, 1992.
    [40] A. W. Lotfi and F. C. Lee, “Proximity Losses in Short Coils of Circular Cylindrical Windings,” in Proc. IEEE PESC’92, 1992, vol. 2 pp. 1253-1260.
    [41] A. Schellmanns, P. Fouassier, J. P. Keradec, and J. L. Schanen, “Equivalent circuits for transformers based on one-dimensional propagation: accounting for multilayer structure of windings and ferrite losses,” IEEE Trans. Magn., vol. 36, no. 5, pp. 3778-3784, 2000.
    [42] F. Nakao, Y. Matsuo, M. Kitaoka, and H. Sakamoto, “Ferrite core couplers for inductive chargers,” in Proc. PCC’02, 2002, vol. 2, pp. 850-854.
    [43] S. Valtchev, B. V. Borges, and J. B. Klaassens, “Contactless energy transmission with optimal efficiency,” in Proc. IECON’02, 2002, vol. 2, pp. 1330-1335.
    [44] R. Mecke and C. Rathge, “High frequency resonant inverter for contactless energy transmission over large air gap,” in Proc. IEEE PESC’04, 2004, vol. 3, pp. 1737-1743.
    [45] J. Hirai, T. W. Kim, and A. Kawamura, “Study on crosstalk in inductive transmission of power and information,” IEEE Trans. Ind. Electron., vol. 46, no. 6, pp. 1174-1182, 1999.
    [46] D. A. G. Pedder, A. D. Brown, and J. A. Skinner, “A contactless electrical energy transmission system,” IEEE Trans. Ind. Electron. vol. 46, no. 1, pp. 23-30, 1999.
    [47] T. H. Nishimura, T. Eguchi,; K. Hirachi, Y. Maejima, K. Kuwana, and M. Saito, “A large air gap flat transformer for a transcutaneous energy transmission system,” in Porc. IEEE PESC’94, 1994, vol. 2, pp. 1323-1329.
    [48] Y. Hiraga, J. Hirai, Y. Kaku, Y. Nitta, A. Kawamura, and K. Ishioka, “Decentralized control of machines with the use of inductive transmission of power and signal,” in Proc. IEEE IAS’94, 1994, vol. 2, pp. 875-881.
    [49] J. M. Barnard, J. A. Ferreira, and J. D. van Wyk, “Sliding transformers for linear contactless power delivery,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 774-779, 1997.
    [50] J. Hirai, T. W. Kim, and A. Kawamura, “Wireless transmission of power and information and information for cableless linear motor drive,” IEEE Trans. Power Electron., vol. 15, no. 1, pp. 21-27, 2000.
    [51] J. Hirai, T. W. Kim, and A. Kawamura, “Integral motor with driver and wireless transmission of power and information for autonomous subspindle drive,” IEEE Trans. Power Electron., vol. 15, no. 1, pp. 13-20, 2000.
    [52] 黃威旗,圓形疊層式壓電變壓器應用於電源轉換器之研究,國立成功大學電機工程學系碩士論文,2003。
    [53] 姜岳廷,應用圓形疊層壓電變壓器於降壓式電源轉換器之研究, 國立成功大學電機工程學系碩士論文,2004。
    [54] 陳佐睦,壓電變壓器式高功因螢光燈電子安定器,國立成功大學電機工程學系碩士論文,2004。

    下載圖示 校內:2007-07-18公開
    校外:2008-07-18公開
    QR CODE