| 研究生: |
張師碩 Chang, Shih-Shuo |
|---|---|
| 論文名稱: |
一個基於壓控振盪器架構之二階連續時間式電流感測三角積分調變器 A VCO-Based 2nd-Order Continuous Time Sigma-Delta Modulator for Current-Sensing System |
| 指導教授: |
李順裕
Lee, Shuenn-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 比例積分技術 、電流讀取電路 、基於環形振盪器架構之連續時間式三角積分調變器 |
| 外文關鍵詞: | sensor readout circuit, direct sensing technique, VCO-based, continuous-time delta-sigma modulator, proportional-integral structure |
| 相關次數: | 點閱:84 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個基於壓控振盪器架構之二階連續時間式電流感測三角積分調變器電路,此電路架構不需使用放大器即可對輸入電流訊號進行量化,應用了比例積分前饋技術,可以有效降低整體電路的複雜度,電路設計目標為高FoMs與高解析度,適合作為物聯網中電流式的感測器應用。
製程使用0.18 μm 1P6M來實現二階連續時間式電流感測三角積分調變器電路,此三角積分調變器應用比例積分前饋技術的架構,在輸入級使用電阻串接額外的電容,不僅取代第二條回授電路的使用,亦維持整體系統的穩定,並實現一電流積分器,再搭配第二級壓控振盪器實現之相位積分器,達成二階的雜訊整形成效,有效抑制量化雜訊造成的誤差。選取電流式數位類比轉換器做為回授路徑,以互補式的架構組成,用來降低偶次諧波造成的非線性失真,提升整體三角積分調變器之效能。
量測結果顯示,在供應電壓為1.2V的情況下,SNDR為74.6 dB,功耗為44.8 μW,FoMs可以達到160.76 dB,其規格與已知文獻中電流式三角積分調變器相比,皆有不錯的表現。
關鍵字: 比例積分技術、電流讀取電路、基於環形振盪器架構之連續時間式三角積分調變器
This paper proposes a voltage-controlled oscillator (VCO)-based 2nd-order continuous-time delta-sigma modulator (CTSDM) for current-sensing readout systems. The proposed VCO-based CTSDM can immediately quantize the current signal from sensor without pre-amplifier. A proportional-integral (PI) structure has been realized by injecting a resistor in series with the integrating capacitor to simplify the circuit complexity as well as maintain the system stability. A noise shaping with second order is implemented by the first-stage PI current integrator and a second-stage VCO phase integrator. The complementary current-steering digital-to-analog converter is adopted as the feedback path for the current subtraction. Measurement results show that the proposed current-sensing VCO-based CTSDM can achieve a signal-to-noise-and-distortion ratio (SNDR) of 74.6 dB in 10 kHz bandwidth while consuming only 44.8 μw under 1.2 V supply. This corresponds to a Figure-of-Merit (FoM) of 160.76 dB which is suitable for sensor readout applications in internet of thing (IoT).
Keywords: sensor readout circuit, direct sensing technique, VCO-based, continuous-time delta-sigma modulator, proportional-integral structure.
參考文獻
[1] B. Murmann, “ADC Performance Survey 1997-2018,” [Online]. Available:http://web.stanford.edu/~murmann/adcsurvey.html.
[2] M. Rajabzadeh, D. Djekic, M. Haeberle, J. Becker, J. Anders and M. Ortmanns, "Comparison Study of Integrated Potentiostats: Resistive-TIA, Capacitive-TIA, CT ΣΔ Modulator," IEEE International Symposium on Circuits and Syst. (ISCAS), 2018, pp. 1-5.
[3] S. S. Ghoreishizadeh, I. Taurino, S. Carrara and G. De Micheli, "A current-mode potentiostat for multi-target detection tested with different lactate biosensors," IEEE Biomed. Circuits Syst. Conf. (BioCAS), 2012, pp. 128-131.
[4] Y. -C. Chen, S. -Y. Lu, J. -H. Tsai and Y. -T. Liao, "A Power-Efficient, Bi-Directional Readout Interface Circuit for Cyclic-Voltammetry Electrochemical Sensors," International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 2019, pp. 1-3.
[5] J. M. de la. Rosa, R. del. Rio, Sigma-Delta Converters: Practical Design Guide. Chichester: Wiley, 2018
[6] S. Abdollahvand, N. Paulino, L. Gomes and J. Goes, "A current-mode VCO-based amplifier-less 2nd-order ΔΣ modulator with over 85dB SNDR," IEEE International Symposium on Circuits and Systems (ISCAS), 2015, pp. 2037-2040.
[7] S. Li, A. Mukherjee and N. Sun, "A 174.3-dB FoM VCO-Based CT Δ Σ Modulator With a Fully-Digital Phase Extended Quantizer and Tri-Level Resistor DAC in 130-nm CMOS," IEEE J. Solid-State Circuits, vol. 52, no. 7, pp. 1940-1952, July 2017.
[8] W. Jiang, V. Hokhikyan, H. Chandrakumar, V. Karkare and D. Marković, "A ±50-mV Linear-Input-Range VCO-Based Neural-Recording Front-End With Digital Nonlinearity Correction," IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 173-184, Jan. 2017.
[9] A. Jayaraj, M. Danesh, S. T. Chandrasekaran and A. Sanyal, "Highly Digital Second-Order ΔΣ VCO ADC," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 7, pp. 2415-2425, July 2019.
[10] M. Sadollahi, L. Shi, Y. Wang and G. C. Temes, "Single-Loop Delta-Sigma ADC Using Noise-Coupled VCO Quantizer," IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), 2018, pp. 149-152.
[11] J. Kim and S. Cho, “A time-based analog-to-digital converter using a multi-phase VCO,” IEEE ISCAS, May 2006, pp. 3934–3937.
[12] M. Straayer and M. Perrott, “A 12-bit 10-MHz bandwidth, continuoustime sigma-delta ADC with a 5-bit, 950-MS/S VCO-based quantizer,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 805–814, Apr. 2008.
[13] M. Park and M. H. Perrott, "A 78 dB SNDR 87 mW 20 MHz Bandwidth Continuous-Time Δ∑ ADC With VCO-Based Integrator and Quantizer Implemented in 0.13 μm CMOS," IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3344-3358, Dec. 2009.
[14] K. Lee, Y. Yoon and N. Sun, “A Scaling-Friendly Low-Power Small-Area ΔΣADC With VCO-Based Integrator and Intrinsic Mismatch Shaping Capability,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 5, no. 4, pp. 561-573, Dec. 2015.
[15] R. T. Baird and T. S. Fiez, “Linearity enhancement of multi-bit A/D and D/A converters using data weighted averaging,” IEEE Trans. Circuits Syst. II, vol. 42, no. 12, pp. 753–762, Dec. 1995.
[16] B. H. Leung and S. Sutarja, "Multibit Sigma - Delta A/D converter incorporating a novel class of dynamic element matching techniques," IEEE Trans. Circuits Syst. II, vol. 39, no. 1, pp. 35-51, Jan. 1992.
[17] H. Y. Lee, P. W. Huang, D. S. Ciou, Z. X. Liao and S. Y. Lee, “A Power-Efficient Current Readout Circuit with VCO-Based 2nd-Order CT Δ∑ ADC for Electrochemistry Acquisition,” IEEE Asian Solid-State Circuits Conf. (A-SSCC), Hiroshima, Japan, 2020, pp. 1-2.
[18] H. Jeon, J. S. Bang, Y. Jung, I. Choi and M. Je, “A High DR, DC-Coupled, Time-Based Neural-Recording IC With Degeneration R-DAC for Bidirectional Neural Interface,” IEEE J. Solid-State Circuits, vol. 54, no. 10, pp. 2658-2670, Oct. 2019.
[19] C. Lee et al., “A 6.5-μW 10-kHz BW 80.4-dB SNDR Gm-C-Based CT ∆∑ Modulator With a Feedback-Assisted Gm Linearization for Artifact-Tolerant Neural Recording,” IEEE J. Solid-State Circuits, vol. 55, no. 11, pp. 2889-2901, Nov. 2020.
[20] C. Tu, Y. Wang and T. Lin, “A Low-Noise Area-Efficient Chopped VCO-Based CTDSM for Sensor Applications in 40-nm CMOS,” IEEE J. Solid-State Circuits, vol. 52, no. 10, pp. 2523-2532, Oct. 2017.
[21] P. Prabha et al., “A Highly Digital VCO-Based ADC Architecture for Current Sensing Applications,” IEEE J. Solid-State Circuits, vol. 50, no. 8, pp. 1785-1795, Aug. 2015.
[22] H. Son et al., “A Low-Power Wide Dynamic-Range Current Readout Circuit for Ion-Sensitive FET Sensors,” IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 3, pp. 523-533, June 2017.
[23] Y. C. Chen, S. Y. Lu and Y. T. Liao, “A Microwatt Dual-Mode Electrochemical Sensing Current Readout With Current-Reducer Ramp Waveform Generation,” IEEE Trans. Biomed. Circuits Syst., vol. 13, no. 6, pp. 1163-1174, Dec. 2019.
[24] S. Y. Lee, H. Y. Lee, D. S. Ciou, Z. X. Liao, P. W. Huang, Y. T. Hsieh, Y. C. Wei, C. Y. Lin, M. D. Shieh, and J. Y Chen, “A Portable Wireless Urine Detection System with Power-Efficient Electrochemical Readout ASIC and ABTS-CNT Biosensor for UACR Detection,” IEEE Trans. Biomed. Circuits Syst., vol. 15, no. 3, pp. 537-548, June 2021.
[25] H. Li, C. S. Boling, and A. J.Mason, “CMOS amperometric ADC with high sensitivity, dynamic range and power efficiency for air quality monitoring,” IEEE Trans. Biomed. Circuits Syst., vol. 10, no. 4, pp. 817–827, Aug. 2016.
校內:立即公開