| 研究生: |
黃庭緯 Huang, Ting-Wei |
|---|---|
| 論文名稱: |
利用磁控濺鍍在鋁箔上成長LiCoO2正極薄膜及電化學性質之研究 Growth and Electrochemical Properties of RF-sputter Cathode LiCoO2 Thin Film on Al foil |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 共同指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 鋰鈷氧化物 、氮化鈦 、磁控濺鍍 、鋰離子薄膜電池 、退火 、擴散現象 、擴散阻障層 |
| 外文關鍵詞: | Li-ion thin film battery, LiCoO2, RF-sputtering, interdiffusion, diffusion barrier, TiN |
| 相關次數: | 點閱:139 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
薄膜電池具有固態電池高安全性以及高能量密度等相關優勢,且由於各層都是以薄膜形式為主,因此可降低固態電池界面阻抗高等問題,可作為可撓式3C裝置或者是微機電裝置的供電來源。在正極材料當中,鋰鈷氧化物(LiCoO2, LCO)具有高理論電容量(140 mAh/g)、高工作電壓(〜4.2 V)以及循環穩定性高等優勢,因此適合作為薄膜電池的正極選擇。LiCoO2薄膜電池研究中,文獻探討製程參數對於LCO微結構的影響所得的結果較為不一;此外,發現基板為鋁時電容量較低,分析薄膜與基板間相互擴散可能為原因,然而幾乎沒有任何相關研究。因此,本研究將以磁控濺鍍成長LiCoO2薄膜,觀察製程參數對於薄膜微結構及電池性能的影響,以及觀察基板與薄膜是否有相互擴散現象,並探討擴散現象對於電池性能影響,最後,運用TiN阻障層嘗試避免擴散現象發生。
本研究第一部份為磁控濺鍍參數對於LCO薄膜微結構的影響,從結果中可得藉由高濺鍍功率及基板升溫可先形成較穩定的LCO結晶相,並透過降低工作距離以增加薄膜中鋰離子含量進而降低鈷氧化物的生成。此外,發現Ar/O2氣體比例不同能夠影響LCO的結晶方向,當Ar/O2比例較低時,能夠使LCO從(003)方向轉變為(101)方向,此為較高電容量的結晶取向。最後,在此部分採用100W、濺鍍壓力10mtorr、Ar/O2為1/1,工作距離7cm及基板溫度250°C為最佳的LCO成長條件。
研究第二部分為退火對於LCO薄膜影響,其結果可得退火氣氛會影響第二相的生成,並可推測LCO薄膜退火時微結構變化的過程;而較高溫及較長時間退火下可得最佳的LCO結晶性。最後以600°C、四小時並於大氣退火可得最佳的LCO結晶性,且可得到最高的電池電容量表現。在此部分也發現在高溫退火時有擴散現象發生,並由XPS、XRD、EDS分析可能形成LiAlO2和LiCo1-xAlxO2等第二相,為可能導致電容量相較於理論值較低的原因;但擴散現象卻對於貼合性部分有較好的幫助,進而提升長循環充放電下的庫倫效率。
研究第三部分為TiN阻障層影響,從結果可得TiN可完全阻擋LCO與Al之間的相互擴散,且晶體分析上可發現Ti離子並不會擴散進入LCO中,且在電性測量上電阻率經過退火後幾乎無明顯差別,證明TiN可有阻障能力及維持良好的導電性,因此預期電性結果會有更好的表現。
LiCoO2 (LCO) is successfully deposited by RF-sputtering on Al foil. By understanding the influence of sputtering and annealing parameters to the film, specific orientation, low second phase and high crystallinity LCO thin film can be prepared. The XRD shows high LCO (101) orientation, and Raman spectra result shows low Co3O4 second phase. The SEM image shows no crack appear after annealing, so short circuit will not occur during battery cycling. Furthermore, interdiffusion is also studied in this research. LiAlO2 layer forms during sputtering, and then Al will diffuse into LCO and substitute Co to become LiCo1-xAlxO2 after annealing through TEM, EDS, XRD and XPS result. The battery discharge capacity is 80 mAh/g after annealing, but due to LiCo1-xAlxO2, it is still lower than practical capacity (140 mAh/g). However, interdiffusion increases coulombic efficiency and enhances long-term cycling performance. TiN can be used as diffusion barrier, and diffusion between LCO and Al can be prevented and maintain conductivity.
[1] J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," (in English), Nature, Review vol. 414, no. 6861, pp. 359-367, Nov 2001.
[2] V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, "Challenges in the development of advanced Li-ion batteries: a review," Energy & Environmental Science, vol. 4, no. 9, 2011.
[3] D. Aurbach, E. Zinigrad, H. Teller, and P. Dan, "Factors which limit the cycle life of rechargeable lithium (metal) batteries," (in English), Journal of the Electrochemical Society, Article vol. 147, no. 4, pp. 1274-1279, Apr 2000.
[4] J. B. Goodenough and Y. Kim, "Challenges for Rechargeable Li Batteries," Chemistry of Materials, vol. 22, no. 3, pp. 587-603, 2009.
[5] N. S. Choi et al., "Challenges facing lithium batteries and electrical double-layer capacitors," Angew Chem Int Ed Engl, vol. 51, no. 40, pp. 9994-10024, Oct 1 2012.
[6] D. D. MacNeil and J. R. Dahn, "The reactions of Li0.5CoO2 with nonaqueous solvents at elevated temperatures," (in English), Journal of the Electrochemical Society, Article vol. 149, no. 7, pp. A912-A919, Jul 2002.
[7] K. Takada, "Progress and prospective of solid-state lithium batteries," Acta Materialia, vol. 61, no. 3, pp. 759-770, 2013.
[8] C. Sun, J. Liu, Y. Gong, D. P. Wilkinson, and J. Zhang, "Recent advances in all-solid-state rechargeable lithium batteries," Nano Energy, vol. 33, pp. 363-386, 2017.
[9] K. Xu, "Nonaqueous liquid electrolytes for lithium-based rechargeable batteries," (in English), Chem. Rev., Review vol. 104, no. 10, pp. 4303-4417, Oct 2004.
[10] J. B. Bates, N. J. Dudney, B. Neudecker, A. Ueda, and C. D. Evans, "Thin-film lithium and lithium-ion batteries," (in English), Solid State Ionics, Article; Proceedings Paper vol. 135, no. 1-4, pp. 33-45, Nov 2000.
[11] A. Rambabu, S. B. Krupanidhi, and P. Barpanda, "An Overview of Nanostructured Li-based Thin Film Micro-batteries," Proceedings of the Indian National Science Academy, vol. 98, no. 0, 2018.
[12] C. M. Julien and A. Mauger, "Pulsed Laser Deposited Films for Microbatteries," (in English), Coatings, Review vol. 9, no. 6, p. 51, Jun 2019, Art no. 386.
[13] Z. Li et al., "Structural study of epitaxial LiCoO2 films grown by pulsed laser deposition on single crystal SrTiO3 substrates," (in English), Thin Solid Films, Article vol. 612, pp. 472-482, Aug 2016.
[14] S. Takeuchi et al., "Epitaxial LiCoO2 Films as a Model System for Fundamental Electrochemical Studies of Positive Electrodes," (in English), ACS Appl. Mater. Interfaces, Article vol. 7, no. 15, pp. 7901-7911, Apr 2015.
[15] S.-W. Jeon, J.-K. Lim, S.-H. Lim, and S.-M. Lee, "As-deposited LiCoO2 thin film cathodes prepared by rf magnetron sputtering," Electrochimica Acta, vol. 51, no. 2, pp. 268-273, 2005.
[16] S. Tintignac, R. Baddour-Hadjean, J. P. Pereira-Ramos, and R. Salot, "High rate bias sputtered LiCoO 2 thinfilms as positive electrode for all-solid-state lithium microbatteries," Electrochimica Acta, vol. 146, pp. 472-476, 2014.
[17] J. B. Bates, N. J. Dudney, B. J. Neudecker, F. X. Hart, H. P. Jun, and S. A. Hackney, "Preferred orientation of polycrystalline LiCoO2 films," (in English), Journal of the Electrochemical Society, Article vol. 147, no. 1, pp. 59-70, Jan 2000.
[18] W. Chang, J. W. Choi, J. C. Im, and J. K. Lee, "Effects of ZnO coating on electrochemical performance and thermal stability of LiCoO2 as cathode material for lithium-ion batteries," (in English), Journal of Power Sources, Article vol. 195, no. 1, pp. 320-326, Jan 2010.
[19] C. Loho, A. J. Darbandi, R. Djenadic, O. Clemens, and H. Hahn, "CO2-Laser Flash Evaporation as Novel CVD Precursor Delivery System for Functional Thin Film Growth," (in English), Chem. Vapor Depos., Article vol. 20, no. 4-6, pp. 152-160, Jun 2014.
[20] B. Dunn, H. Kamath, and J. M. Tarascon, "Electrical Energy Storage for the Grid: A Battery of Choices," (in English), Science, Review vol. 334, no. 6058, pp. 928-935, Nov 2011.
[21] J. B. Goodenough and K. S. Park, "The Li-ion rechargeable battery: a perspective," J Am Chem Soc, vol. 135, no. 4, pp. 1167-76, Jan 30 2013.
[22] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, "Li-ion battery materials: present and future," Materials Today, vol. 18, no. 5, pp. 252-264, 2015.
[23] C. M. Julien, A. Mauger, K. Zaghib, and H. Groult, "Comparative Issues of Cathode Materials for Li-Ion Batteries," Inorganics, vol. 2, no. 1, pp. 132-154, 2014.
[24] W. Li, B. Song, and A. Manthiram, "High-voltage positive electrode materials for lithium-ion batteries," Chem Soc Rev, vol. 46, no. 10, pp. 3006-3059, May 22 2017.
[25] W. Liu et al., "Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries," Angew Chem Int Ed Engl, vol. 54, no. 15, pp. 4440-57, Apr 7 2015.
[26] C. Daniel, D. Mohanty, J. Li, and D. L. Wood, "Cathode materials review," 2014.
[27] Y. Huang et al., "Iridium Doping Boosting the Electrochemical Performance of Lithium-Rich Cathodes for Li-Ion Batteries," (in English), ACS Appl. Energ. Mater., Article vol. 4, no. 3, pp. 2489-2495, Mar 2021.
[28] M. Prabu, M. V. Reddy, S. Selvasekarapandian, G. V. S. Rao, and B. V. R. Chowdari, "(Li, Al)-co-doped spinel, Li(Li0.1Al0.1Mn1.8)O-4 as high performance cathode for lithium ion batteries," (in English), Electrochimica Acta, Article vol. 88, pp. 745-755, Jan 2013.
[29] M. K. Shobana, "Metal oxide coated cathode materials for Li ion batteries - A review," (in English), J. Alloy. Compd., Review vol. 802, pp. 477-487, Sep 2019.
[30] H. Q. Liu, T. T. Zheng, Q. Y. Guo, Y. B. Chen, and Y. J. Gu, "Development of LiFePO4 as the Cathode Materials," (in Chinese), Rare Metal Mat. Eng., Review vol. 41, no. 4, pp. 748-752, Apr 2012.
[31] C. Jacob, T. Lynch, A. Chen, J. Jian, and H. Wang, "Highly textured Li(Ni0.5Mn0.3Co0.2)O2 thin films on stainless steel as cathode for lithium-ion battery," Journal of Power Sources, vol. 241, pp. 410-414, 2013.
[32] D. Feng, Q. Liu, T. D. Hu, Y. Chen, and T. B. Zeng, "Boosting cyclability performance of the LiNi0.8Co0.15Al0.05O2 cathode by a polyacrylonitrile-induced conductive carbon surface coating," (in English), Ceramics International, Article vol. 47, no. 9, pp. 12706-12715, May 2021.
[33] C. M. Julien, A. Mauger, and O. M. Hussain, "Sputtered LiCoO2 Cathode Materials for All-solid-state Thin-film Lithium Microbatteries," Materials (Basel), vol. 12, no. 17, Aug 22 2019.
[34] Y. Lyu et al., "An Overview on the Advances of LiCoO2 Cathodes for Lithium‐Ion Batteries," Advanced Energy Materials, vol. 11, no. 2, 2020.
[35] N. J. Dudney and Y.-I. Jang, "Analysis of thin-film lithium batteries with cathodes of 50 nm to 4 μm thick LiCoO2," Journal of Power Sources, vol. 119-121, pp. 300-304, 2003.
[36] P. J. Bouwman, B. A. Boukamp, H. J. M. Bouwmeester, and P. H. L. Notten, "Influence of diffusion plane orientation on electrochemical properties of thin film LiCoO2 electrodes," (in English), Journal of the Electrochemical Society, Article vol. 149, no. 6, pp. A699-A709, Jun 2002.
[37] J. Xie, N. Imanishi, T. Matsumura, A. Hirano, Y. Takeda, and O. Yamamoto, "Orientation dependence of Li–ion diffusion kinetics in LiCoO2 thin films prepared by RF magnetron sputtering," Solid State Ionics, vol. 179, no. 9-10, pp. 362-370, 2008.
[38] Y. Yoon, C. Park, J. Kim, and D. Shin, "Lattice orientation control of lithium cobalt oxide cathode film for all-solid-state thin film batteries," Journal of Power Sources, vol. 226, pp. 186-190, 2013.
[39] H. Pan and Y. Yang, "Effects of radio-frequency sputtering powers on the microstructures and electrochemical properties of LiCoO2 thin film electrodes," Journal of Power Sources, vol. 189, no. 1, pp. 633-637, 2009.
[40] C. Ziebert et al., "Constitution, microstructure, and battery performance of magnetron sputtered Li–Co–O thin film cathodes for lithium-ion batteries as a function of the working gas pressure," Surface and Coatings Technology, vol. 205, no. 5, pp. 1589-1594, 2010.
[41] C.-L. Liao and K.-Z. Fung, "Lithium cobalt oxide cathode film prepared by rf sputtering," Journal of Power Sources, vol. 128, no. 2, pp. 263-269, 2004.
[42] H. Benqlilou-Moudden, G. Blondiaux, P. Vinatier, and A. Levasseur, "Amorphous lithium cobalt and nickel oxides thin films: preparation and characterization by RBS and PIGE," (in English), Thin Solid Films, Article vol. 333, no. 1-2, pp. 16-19, Nov 1998.
[43] J. C. Dupin, D. Gonbeau, H. Benqlilou-Moudden, P. Vinatier, and A. Levasseur, "XPS analysis of new lithium cobalt oxide thin-films before and after lithium deintercalation," (in English), Thin Solid Films, Article vol. 384, no. 1, pp. 23-32, Mar 2001.
[44] J.-p. Noh et al., "Fabrication of LiCoO2 thin film cathodes by DC magnetron sputtering method," Materials Research Bulletin, vol. 47, no. 10, pp. 2823-2826, 2012.
[45] D. Takamatsu et al., "Electrochemical and Spectroscopic Characterization of LiCoO2Thin-Film as Model Electrode," Journal of The Electrochemical Society, vol. 161, no. 9, pp. A1447-A1452, 2014.
[46] K.-T. Jung et al., "Influence of the substrate texture on the structural and electrochemical properties of sputtered LiCoO2 thin films," Thin Solid Films, vol. 546, pp. 414-417, 2013.
[47] Y. Ma et al., "Annealing of LiCoO2 films on flexible stainless steel for thin film lithium batteries," Journal of Materials Research, vol. 35, no. 1, pp. 31-41, 2019.
[48] W. S. Kim, "Characteristics of LiCoO2 thin film cathodes according to the annealing ambient for the post-annealing process," (in English), Journal of Power Sources, Article vol. 134, no. 1, pp. 103-109, Jul 2004.
[49] J. P. Noh, K. T. Jung, G. B. Cho, S. H. Lee, K. W. Kim, and T. H. Nam, "The Effects of Substrate and Annealing on Structural and Electrochemical Properties in LiCoO2 Thin Films Prepared by DC Magnetron Sputtering," (in English), J. Nanosci. Nanotechnol., Article vol. 12, no. 7, pp. 5937-5941, Jul 2012.
[50] Z. Yang, G. Xing, J. Yang, C. Mao, and J. Du, "Effect of annealing temperature on structure and electrochemical properties of LiCoO2 cathode thin films," Rare Metals, vol. 25, no. 6, pp. 189-192, 2006.
[51] H. Y. Park et al., "LiCoO2 thin film cathode fabrication by rapid thermal annealing for micro power sources," Electrochimica Acta, vol. 52, no. 5, pp. 2062-2067, 2007.
[52] T. Moon, C. Kim, and B. Park, "Electrochemical performance of amorphous-silicon thin films for lithium rechargeable batteries," Journal of Power Sources, vol. 155, no. 2, pp. 391-394, 2006.
[53] J. P. Maranchi, A. F. Hepp, A. G. Evans, N. T. Nuhfer, and P. N. Kumta, "Interfacial Properties of the a-Si∕Cu:Active–Inactive Thin-Film Anode System for Lithium-Ion Batteries," Journal of The Electrochemical Society, vol. 153, no. 6, 2006.
[54] H. C. M. Knoops et al., "Deposition of TiN and TaN by Remote Plasma ALD for Cu and Li Diffusion Barrier Applications," (in English), Journal of the Electrochemical Society, Article vol. 155, no. 12, pp. G287-G294, 2008.
[55] H. S. Kim, Y. Oh, K. H. Kang, J. H. Kim, J. Kim, and C. S. Yoon, "Characterization of Sputter-Deposited LiCoO2 Thin Film Grown on NASICON-type Electrolyte for Application in All-Solid-State Rechargeable Lithium Battery," ACS Appl Mater Interfaces, vol. 9, no. 19, pp. 16063-16070, May 17 2017.
[56] J. H. Kim et al., "Effect of annealing temperature on the interfacial interaction of LiNi0.5Mn1.5O4 thin film cathode with stainless-steel substrate," Journal of Electroceramics, vol. 42, no. 3-4, pp. 104-112, 2018.
[57] H. Xia, L. Lu, and Y. S. Meng, "Growth of layered LiNi[sub 0.5]Mn[sub 0.5]O[sub 2] thin films by pulsed laser deposition for application in microbatteries," Applied Physics Letters, vol. 92, no. 1, 2008.
[58] A. Bünting et al., "Influence of titanium nitride interlayer on the morphology, structure and electrochemical performance of magnetron-sputtered lithium iron phosphate thin films," Journal of Power Sources, vol. 281, pp. 326-333, 2015.
[59] J. Pracharova et al., "LiCoO2 thin-film cathodes grown by RF sputtering," (in English), Journal of Power Sources, Article vol. 108, no. 1-2, pp. 204-212, Jun 2002, Art no. Pii s0378-7753(02)00018-6.
[60] H.-K. Kim and Y. S. Yoon, "Characteristics of rapid-thermal-annealed LiCoO2 cathode film for an all-solid-state thin film microbattery," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 22, no. 4, pp. 1182-1187, 2004.
[61] J. Trask et al., "Optimization of 10-μm, sputtered, LiCoO 2 cathodes to enable higher energy density solid state batteries," Journal of Power Sources, vol. 350, pp. 56-64, 2017.
[62] Y. R. Kosuri, "Investigations On Sputter Deposited LiCoO2 Thin Films From Powder Target," Advanced Materials Letters, vol. 4, no. 8, pp. 615-620, 2013.
[63] W. W. Huang and R. Frech, "Vibrational spectroscopic and electrochemical studies of the low and high temperature phases of LiCo(1-x)M(x)O(2) (M=Ni or Ti)," (in English), Solid State Ionics, Article; Proceedings Paper vol. 86-8, pp. 395-400, Jul 1996.
[64] L. Le Van‐Jodin, D. Rouchon, V. H. Le, I. Chevalier, J. Brun, and C. Secouard, "Ex situ and operando study of LiCoO2 thin films by Raman spectroscopy: Thermal and electrochemical properties," Journal of Raman Spectroscopy, vol. 50, no. 10, pp. 1594-1601, 2019.
[65] H. Nagai, T. Suzuki, and M. Sato, "Electrical properties of partially nitrided LiCoO2 thin films with an equivalent amount of Li and Co," Materials Technology, vol. 35, no. 9-10, pp. 587-593, 2020.
[66] G. Cherkashinin, D. Ensling, and W. Jaegermann, "LiMO2 (M = Ni, Co) thin film cathode materials: a correlation between the valence state of transition metals and the electrochemical properties," Journal of Materials Chemistry A, vol. 2, no. 10, 2014.
[67] S. T. Myung, N. Kumagai, S. Komaba, and H. T. Chung, "Effects of Al doping on the microstructure of LiCoO2 cathode materials," (in English), Solid State Ionics, Article vol. 139, no. 1-2, pp. 47-56, Jan 2001.
[68] M. Xie, T. Hu, L. Yang, and Y. Zhou, "Synthesis of high-voltage (4.7 V) LiCoO2 cathode materials with Al doping and conformal Al2O3 coating by atomic layer deposition," RSC Advances, vol. 6, no. 68, pp. 63250-63255, 2016.
[69] Y. Shu et al., "Tuning the ratio of Al2O3 to LiAlO2 in the composite coating layer for high performance LiNi0.5Mn1.5O4 materials," Ceramics International, vol. 46, no. 10, pp. 14840-14846, 2020.
校內:2026-08-11公開