| 研究生: |
莊家毅 Zhuang, Chia-Yi |
|---|---|
| 論文名稱: |
基於推薦系統與知識空間之適性化學習路徑規劃系統 An adaptive learning path planning system based on a recommender system and knowledge space |
| 指導教授: |
王振興
Wang, Jeen-Shing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 學習路徑 、適性化教育 、知識空間 、推薦系統 、學習表現預測 |
| 外文關鍵詞: | learning path, adaptive education, knowledge space, recommender system, learning performance prediction |
| 相關次數: | 點閱:145 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在運用學科領域知識空間、學習狀態與推薦系統,預測學生在數學科各知識點的學習狀況,並規劃適性化之學習路徑,取代傳統教科書章節排序單一路徑的教學方法,使學習路徑能對應學生的差異產生適性化。知識空間由臺南一所女子高中和一所男子高中的教師群共同定義,利用此知識空間產生符合先備(Prerequisite)關聯的學習路徑集。本研究以10題不同知識點的學習前試題測驗作為學習狀態,並以測驗結果做為輸入,經推薦系統演算法產生學生在其它知識點表現的預測值。推薦系統選擇基於使用者協同過濾(User-Based Collaborative Filtering, UBCF)演算法預測學生在各個知識點的學習表現,並對照知識空間與系統中的規劃策略,規劃出適性化且能提高學生學習動機的學習路徑。本研究共有108名來自台南兩所高中補修班的學生參與,兩校都使用適性化線上學習平台,兩校都有一個使用傳統教學路徑與一個適性化學習路徑的班級,並於相同授課時間的前後進行測驗。研究範圍包含高中數學科第一冊與第二冊的知識空間,研究利用推薦系統預測學生各知識點答對率,並比較學生學習前後的學習成績。首先,無論適性化路徑班或傳統路徑班,學生後測分數皆顯著高於前測分數,而且男子高中的適性化路徑班的後測分數顯著高於傳統路徑班的後測分數。此外,本研究也利用科技滿意度問卷、學習動機問卷與訪談蒐集學生回饋,研究發現學習動機變化與後測分數達顯著正相關。若學生偏好的學習策略符合適性化學習路徑的規劃策略,適性化學習路徑能提升學生學習動機和學科成績。未來研究可擴大使用平台的學生數量,蒐集更多學生使用的學習數據進行分析,讓推薦系統預測值能更精準,實現個人化獲得知識的效率與效果。
This study aims to apply the subject area knowledge space, knowledge state and recommender system to predict the learning situation of students in mathematics knowledge units, and plan adaptive learning paths to replace the traditional single path teaching method; thus, the learning paths can correspond and be adaptive to the differences of students. The knowledge space is jointly defined by the teachers from a girls’ senior high school and a boys’ senior high school in Tainan. Using Mathematics knowledge space, a set of learning paths with prerequisite can be generated. This study administers a pretest, including 10 different knowledge units as the learning state, and then provides the recommender system to predict the performance of other knowledge units of students. The recommender system selects a user-based collaborative filtering (UBCF) algorithm that predicts student performance based on students’ learning state and other students’ learning data in the past to plan suitable learning paths corresponding to the knowledge space.
In this study, a total of 108 students from the remedial classes of two high schools were recruited. They were individually divided into two classes, implementing the traditional learning path and the adaptive learning path. The high school mathematics knowledge spaces of 1st and 2nd semesters were developed. All participants used online learning platform, had the same learning time, and took the pretest and posttest. The research result indicated that the posttest scores are both significantly higher than the pretest scores in both traditional learning path and adaptive learning path. And, the posttest scores of the adaptive learning path class in the boys’ senior high school are significantly higher than those in the traditional learning path class. Besides, this study also used the survey of technology acceptance model, the learning motivation questionnaire, and the interview to collect student feedback. The result found that the changes in learning motivation are significantly positively correlated with the posttest scores. If the student’s preferred learning strategy is consistent with the adaptive learning path planning, his/her learning motivation and academic achievement are enhanced. Future research can expand the number of students using the platform, collect more learning data used by students for analysis, and make the predictions of the recommendation system more accurate, and achieve the efficiency and effectiveness of personalized knowledge.
[1] J. Y. AbuEl-Reesh and S. S. Abu-Naser, “An Intelligent Tutoring System for Learning Classical Cryptography Algorithms (CCAITS),” International Journal of Academic and Applied Research (IJAAR), vol. 2, no. 2, pp. 1-11, 2018.
[2] M. I. Alhabbash, A. O. Mahdi, and S. S. A. Naser, “An Intelligent Tutoring System for Teaching Grammar English Tenses,” EUROPEAN ACADEMIC RESEARCH, vol. 4, no. 9, pp. 1-15, 2016.
[3] J.-P. Doignon and J.-C. Falmagne, “Knowledge spaces and learning spaces,” New Handbook of Mathematical Psychology, vol. 2, pp. 274-321, 2016.
[4] S. Dwivedi and V. K. Roshni, “Recommender system for big data in education,” in 2017 5th National Conference on E-Learning & E-Learning Technologies (ELELTECH), IEEE, Hyderabad, India, Aug. 2017, pp. 1-4.
[5] A. Essa, “A possible future for next generation adaptive learning systems,” Smart Learning Environments, vol. 3, no. 1, p. 16, 2016.
[6] J.-C. Falmagne, E. Cosyn, J.-P. Doignon, and N. Thiéry, “The assessment of knowledge, in theory and in practice,” in Formal Concept Analysis, Springer, Berlin, Heidelberg, 2006, pp. 61-79.
[7] C. A. Gomez-Uribe and N. Hunt, “The netflix recommender system: Algorithms, business value, and innovation,” ACM Transactions on Management Information Systems (TMIS), vol. 6, no. 4, p. 13, 2016.
[8] H. J. Hartman, “Developing students’ metacognitive knowledge and skills,” in Metacognition in Learning and Instruction, Springer, Dordrecht, 2001, pp. 33-68.
[9] M.-H. Hsu, “A personalized English learning recommender system for ESL students,” Expert Systems with Applications, vol. 34, no. 1, pp. 683-688, 2008.
[10] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender systems,” Computer, vol. 42, no. 8, pp. 30-37, 2009.
[11] G. Linden, B. Smith, and J. York, “Amazon. com recommendations: Item-to-item collaborative filtering,” IEEE Internet computing, vol. 7, no. 1, pp. 76-80, 2003.
[12] R. Luckin, W. Holmes, M. Griffiths, and L. B. Forcier, Intelligence unleashed: An argument for AI in education, London: Pearson Education, 2016.
[13] M. A. Tayebi, M. Ester, U. Glässer, and P. L. Brantingham, “Crimetracer: Activity space based crime location prediction,” in Proceedings of the 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, IEEE Press, Piscataway, NJ, USA, Aug. 2014, pp. 472-480.
[14] N. Thai-Nghe, L. Drumond, A. Krohn-Grimberghe, and L. Schmidt-Thieme, “Recommender system for predicting student performance,” Procedia Computer Science, vol. 1, no. 2, pp. 2811-2819, 2010.
[15] H. M. Truong, “Integrating learning styles and adaptive e-learning system: Current developments, problems and opportunities,” Computers in Human Behavior, vol. 55, pp. 1185-1193, 2016.
[16] 丁香尤(2013)。資訊科技融入國小數學科教學效益之研究-以國小四年級「小數」 單元為例。虎尾科技大學資訊管理研究所學位論文,雲林縣。
[17] 王子龍(2014)。結合概念構圖之翻轉教學法研究-以國小六年級自然與生活科技領域為例。靜宜大學資訊碩士在職專班碩士論文,台中市。 取自https://hdl.handle.net/11296/2t9256。
[18] 王為國(2005)。適性教學的回顧與展望。課程與教學,8(1),97-110。
[19] 王為國(2012)。促進適性教學之方法。台灣教育評論月刊,1(5),79-80。
[20] 李俊賢(2019)。應用因材網進行七年級整數運算單元適性補救教學之研究。國立台中教育大學教育資訊與測驗統計研究所博碩士論文,台中市。取自http://ntcuir.ntcu.edu.tw/handle/987654321/13984。
[21] 巫素萍(2016)。從「均一」到「學思達」國小高年級數學教學實踐之研究。中正大學教學專業發展數位學習碩士在職專班學位論文,嘉義縣。
[22] 林玉光(2018)。探討「因材網」對國小學生自然領域學習的影響。國立臺北教育大學自然科學教育學系學位論文,台北市。
[23] 林立敏、白曉珊、郭伯臣、劉育隆(2007)。數位個別指導教材研發與適性補救教學模式之研究-以國小五年級數學“因數與倍數”單元為例。網際網路技術學刊,8(2),191-197。
[24] 花英德(2008)。以科技接受模式探討國小學童 Moodle 教學平台使用行為之研究~ 以資訊議題教材為例。東海大學教育研究所碩士論文,台中市。取自http://140.128.103.80:8080/handle/310901/1927。
[25] 周雅釧、黃志勝、施淑娟、郭伯臣(2009)。結合線上診斷評量系統之適性補救教學研究。網際網路技術學刊,10(4),419-425。
[26] 陳文娟(2017)。小數的除法單元適性診斷與補救教學成效分析。國立台中教育大學教育資訊與測驗統計研究所博碩士論文,台中市。取自http://ntcuir.ntcu.edu.tw/handle/987654321/12228。
[27] 郭茜文(2018)。線上學習平台之跨年級診斷與補救教學成效比較。國立台中教育大學教育資訊與測驗統計研究所博碩士論文,台中市。取自http://ntcuir.ntcu.edu.tw/handle/987654321/13259。
[28] 張歆平(2016)。翻轉教室之教學成效—均一教育平台運用於國小二年級數學乘法單元教學。義守大學資訊管理學系學位論文,高雄市。
[29] 曾彥鈞、張雅媛、郭伯臣(2006)。基於知識結構之適性診斷測驗系統的防猜選題策略。測驗統計年刊,14,37-51。
[30] 温富榮、趙元炤(2019)。南投縣適性教學之實踐與探究—以國小為例。臺灣教育評論月刊,8(3), 205-209。
[31] 蔡文榮、陳雅屏(2016)。互動式電子白板的使用差異對國小生英語學習動機與學習成就之影響。彰化師大教育學報,30,31-58。
[32] 劉湘川、許天維、郭伯臣、胡豐榮(1994)。試題關聯結構分析法及其在國小數學科教學上的應用。國民教育研究集刊,2,11-26。
[33] 賴宗宏(2018)。應用因材網輔助國小數學科自主學習之研究。 國立台中教育大學教育資訊與測驗統計研究所博碩士論文,台中市。取自http://ntcuir.ntcu.edu.tw/handle/987654321/13270。
[34] 謝州恩(2013)。鷹架理論的發展、類型、模式與對科學教學的啟示。科學教育月刊,364,2-16。取自http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/8348。
[35] 薛雅純(2019)。以均一教育平台實施差異化教學之實務見解。臺灣教育評論月刊,8(1),245-248。
[36] 因材網。檢自http://210.71.198.38/index_AIAL2.phpt=1564133332。
[37] 全國立案補習班統計圖表。檢自https://bsb.kh.edu.tw/afterschool/register/statistic_form.jsp。
[38] 均一教育平台。檢自https://www.junyiacademy.org/。