簡易檢索 / 詳目顯示

研究生: 張哲豪
Chang, Che-Hao
論文名稱: 利用靜態同步補償器於多機電力系統連接整合陸域與離岸風場之穩定度改善分析
Stability-Improvement Analysis of a Multi-Machine Power System Connected with an Integrated Onshore and Offshore Wind Farm Using a STATCOM
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 160
中文關鍵詞: 動態滑差式感應發電機雙饋式感應發電機多機電力系統靜態同步補償器阻尼控制器穩定度
外文關鍵詞: Dynamic-slip induction generator, doubly-fed induction generator, multi-machine power system, static synchronous compensator, stability
相關次數: 點閱:100下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以風力用繞線式轉子感應發電機為基礎提出兩種系統架構,系統架構一為單部採用轉子電阻控制器之動態滑差式感應發電機併接電網;系統架構二為整合動態滑差式感應發電機之陸域風場與雙饋式感應發電機之離岸風場連接至四機-雙區域之多機電力系統,文中並提出採用靜態同步補償器以改善系統穩定度。本論文於三相平衡系統條件下,採用交直軸等效電路模型以建立整體系統之數學模型,並利用相位補償法設計超前-落後型式之功率振盪阻尼控制器,俾於抑制電力系統之低頻振盪。本論文於穩態方面,分析風場在不同工作條件下,系統之運作特性與頻域特徵值之變化。在動態及暫態方面,分別完成風速變動、轉矩干擾以及三相短路等模擬結果之分析,並比較系統加入靜態同步補償器及阻尼控制器所改善之效果。

    This thesis presents stability analysis of two system configurations using a dynamic-slip induction generator (DSIG). System configuration 1 is a wind turbine generator based on DSIG while system configuration 2 is a two-area multi-machine power system connected with an integrated onshore wind farm based on DSIG and offshore wind farm based on doubly-fed induction generator (DFIG) through a static synchronous compensator (STATCOM). The q-d axis equivalent-circuit model is derived to establish the complete system model under three-phase balanced condition. A lead-lag type of power-oscillation damping controller (PODC) of the STATCOM is designed by using phase-compensation method based on modal control theory to damp low-frequency oscillations of the studied power system. Analysis of steady-state operating characteristics and eigenvalue variation of the studied system under different operating conditions is performed. Dynamic and transient simulations of the studied system subjected to a wind-speed disturbance, a torque disturbance, and a three-phase short circuit fault at the power system are also carried out. The responses of the studied system containing the STATCOM with and without the designed PODC are also compared.

    摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 表目錄 XII 圖目錄 XIV 符號說明 XVII 第一章 緒論 1 1-1 研究背景與動機 1 1-2 相關文獻回顧 2 1-3 本論文之貢獻 8 1-4 研究內容概述 10 第二章 系統數學模型 13 2-1 前言 13 2-2 系統架構 14 2-3 風速之數學模型 18 2-4 風渦輪機之數學模型 20 2-5 旋角控制器之數學模型 23 2-6 風渦輪機與發電機間轉矩之數學模型 25 2-7 繞線式轉子感應發電機之數學模型 26 2-8 電力電子轉換器之數學模型 28 2-8-1 動態滑差式感應發電機之轉子電阻控制器 29 2-8-2 雙饋式感應發電機之轉子側轉換器 30 2-8-3 雙饋式感應發電機之電網側轉換器 32 2-9 同步發電機之數學模型 33 2-10 激磁機之數學模型 36 2-11 蒸汽渦輪機之數學模型 37 2-12 調速機之數學模型 38 2-13 靜態同步補償器之數學模型 39 2-14 電力系統網路之數學模型 42 第三章 靜態同步補償器之阻尼控制器設計 45 3-1 前言 45 3-2 回授訊號選擇 46 3-3 靜態同步補償器之控制系統模型 49 3-4 相位補償法設計功率振盪阻尼控制器 50 3-5 靈敏度分析 55 第四章 系統之穩態分析 59 4-1 前言 59 4-2 系統架構一之穩態分析 59 4-2-1 動態滑差式感應發電機之圓線圖分析 60 4-2-1-1 氣隙端效率之特性圓線圖 62 4-2-1-2 電磁轉矩之特性圓線圖 65 4-2-2 風速變動 67 4-2-3 轉子繞組外接電阻變動 78 4-2-4 電網電壓變動 86 4-3 系統架構二之穩態分析 94 4-3-1 風速變動時系統之穩態工作點 94 4-3-2 風速變動時系統之特徵值 100 第五章 系統之動態與暫態分析 110 5-1 前言 110 5-2 系統架構一之動態與暫態分析 110 5-2-1 風速變動之動態分析 111 5-2-2 風渦輪機轉矩干擾之動態分析 115 5-2-3 三相短路之暫態分析 119 5-3 系統架構二之動態與暫態分析 124 5-3-1 風速變動之動態分析 124 5-3-2 同步發電機轉矩干擾之動態分析 131 5-3-3 三相短路之暫態分析 137 第六章 結論與未來研究方向 146 6-1 結論 146 6-2 未來研究方向 148 參考文獻 150 附錄 157 作者簡介 158

    [1] 江榮城,台灣風力發電運轉經驗及未來展望,環保資訊月刊,第97期,第11-18頁,2006年5月。
    [2] 台灣電力公司,風力發電第四期計畫可行性研究報告,台灣電力公司,2011年6月。
    [3] World Wind Energy Association, http://www.windea.org/, retrieved date: Jun. 18, 2014.
    [4] 經濟部能源局。http://www.moeaboe.gov.tw/, retrieved date: Jun. 18, 2014.
    [5] Z. Chen, Y. Hu, and F. Blaabjerg, “Stability improvement of induction generator-based wind turbine systems,” IET Renewable Power Generation, vol. 1, no. 1, pp. 81-93, Mar. 2007.
    [6] L. Lin, F. Sun, Y. Yang, and Q. Li, “Comparison of reactive power compensation strategy of wind farm based on Optislip wind turbines,” in Proc. International Conference on Sustainable Power Generation and Supply, Nanjing, China, Apr. 6-7, 2009, pp. 1-6.
    [7] M. S. Marhaba, S. Farhangi, and M. A. Paymani, “Comparison of power fluctuation between Optislip and DFIG controlled wind turbines,” in Proc. Power Electronics and Drive Systems Technology, Tehran, Iran, Feb. 15-16, 2012, pp. 290-295.
    [8] J. G. Slootweg and W. L. Kling, “Aggregated modelling of wind parks in power system dynamics simulations,” in Proc. IEEE Power Tech Conference, Bologna, Italy, Jun. 23-26, 2003.
    [9] F. M. Hughes, O. Anaya-Lara, N. Jenkins, and G. Strbac, “Control of DFIG-based wind generation for power network support,” IEEE Trans. Power Systems, vol. 20, no. 4, pp. 1958-1966, Nov. 2005.
    [10] F. Wu, X.-P. Zhang, K. Godfrey, and P. Ju, “Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator,” IET Generation, Transmission, and Distribution, vol. 1, no. 5, pp. 751-760, Sep. 2007.
    [11] H.-S. Ko, G.-G. Yoon, and W.-P. Hong, “Active use of DFIG-based variable-speed wind-turbine for voltage regulation at a remote location,” IEEE Trans. Power Systems, vol. 22, no. 4, pp. 1916-1925, Nov. 2007.
    [12] A. Jain, K. Joshi, A. Behal, and N. Mohan, “Voltage regulation with STATCOMs Modeling, control and results,” IEEE Trans. Power Delivery, vol. 21, no. 2, pp. 726-735, Apr. 2006.
    [13] H. Gaztanaga, I. Etxeberria-Otadui, D. Ocnasu, and S. Bacha, “Real-time analysis of the transient response improvement of fixed-speed wind farms by using a reduced-scale STATCOM prototype,” IEEE Trans. Power Systems, vol. 22, no. 2, pp. 658-666, May 2007.
    [14] K. Wang and M. L. Crow, “Power system voltage regulation via STATCOM internal nonlinear control,” IEEE Trans. Power Systems, vol. 26, no. 3, pp. 1252-1262, Aug. 2011.
    [15] A. M. A. Hamdan, “Geometric measures of modal controllability and observability of power system models,” Electric Power Systems Research, vol. 15, no. 2, pp. 147-155, Oct. 1988.
    [16] A. Heniche and I. Kamwa, “Using global control and SMES to damp inter-area oscillations: An exploratory assessment,” in Proc. IEEE Power Engineering Society Summer Meeting, Seattle, Washington, USA, Jul. 16-20, 2000, pp. 1872-1876.
    [17] A. Heniche and I. Kamwa, “Control loops selection to damp inter-area oscillations of electrical networks,” IEEE Trans. Power Systems, vol. 17, no. 2, pp. 378-384, May 2002.
    [18] A. Heniche and I. Kamwa, “Assessment of two methods to select wide-area signals for power system damping control,” IEEE Trans. Power Systems, vol. 23, no. 2, pp. 572-581, May 2008.
    [19] J. L. Dominguez-Garcia, F. D. Bianchi, and O. Gomis-Bellmunt, “Control signal selection for damping oscillations with wind power plants based on fundamental limitations,” IEEE Trans. Power Systems, vol. 28, no. 4, pp. 4274-4281, Nov. 2013.
    [20] N. Mithulananthan, C. A. Canizares, J. Reeve, and G. J. Rogers, “Comparison of PSS, SVC, and STATCOM controllers for damping power system oscillations,” IEEE Trans. Power Systems, vol. 18, no. 2, pp. 786-792, May 2003.
    [21] Y. Zhang and A. Bose, “Design of wide-area damping controllers for inter-area oscillations,” IEEE Trans. Power Systems, vol. 23, no. 3, pp. 1136-1143, Aug. 2008.
    [22] K. Elkington and M. Ghandhari, “Non-linear power oscillation damping controllers for doubly fed induction generators in wind farms,” IET Renewable Power Generation, vol. 7, no. 2, pp. 172-179, Mar. 2013.
    [23] M. E. Aboul-Ela, A. A. Sallam, J. D. Mccalley, and A. A. Fouad, “Damping controller design for power system oscillations using global signals,” IEEE Trans. Power Systems, vol. 11, no. 2, pp. 767-773, May 1996.
    [24] N. Yang, Q. Liu, and J. D. Mccalley, “TCSC controller design for damping inter-area oscillations,” IEEE Trans. Power Systems, vol. 13, no. 4, pp. 1304-1310, Nov. 1998.
    [25] R. Sadikovic, P. Korba, and G. Andersson, “Application of FACTS devices for damping of power system oscillations,” in Proc. IEEE Russia Power Tech, Petersburg, Russia, Jun. 27-30, 2005, pp. 1-6.
    [26] Y. Chang, Z. Xu, G. Cheng, and J. Xie, “A novel SVC supplementary controller based on wide area signals,” in Proc. IEEE Power Engineering Society General Meeting, Montreal, Quebec, Canada, Jun. 18-22, 2006, pp. 1-7.
    [27] F. Xiao, Y.-Z. Sun, F. Yang, and L. Cheng, “Inter-area damping controller design based on mode controllability and observability,” in Proc. IEEE International Power Engineering Conference, Singapore, Dec. 3-6, 2007, pp. 95-99.
    [28] G. Cakir and G. Radman, “Placement and performance analysis of STATCOM and SVC for damping oscillation,” in Proc. IEEE International Conference on Electric Power and Energy Conversion Systems, Istanbul, Turkey, Oct. 2-4, 2013, pp. 1-5.
    [29] J.-B. Zhang, C.-Y. Chung, and Y.-D. Han, “A novel modal decomposition control and its application to PSS design for damping inter-area oscillations in power systems,” IEEE Trans. Power Systems, vol. 27, no. 4, pp. 2015-2025, Nov. 2012.
    [30] W. Yao, L. Jiang, J.-Y. Wen, Q.-H. Wu, and S.-J. Cheng, “Wide-area damping controller of FACTS devices for inter-area oscillations considering communication time delays,” IEEE Trans. Power Systems, vol. 29, no. 1, pp. 318-329, Jan. 2014.
    [31] D. J. Burnham, S. Santoso, and E. Muljadi, “Variable rotor-resistance control of wind turbine generators,” in Proc. IEEE Power and Energy Society General Meeting, Calgary, Alberta, Canada, Jul. 26-30, 2009, pp. 1-6.
    [32] P. M. Anderson and A. Bose, “Stability simulation of wind turbine systems,” IEEE Trans. Power Apparatus and Systems, vol. 102, no. 12, pp. 3791-3795, Dec. 1983.
    [33] A. O. Ibrahim, T. H. Nguyen, D.-C. Lee, and S.-C. Kim, “A fault ride-through technique of DFIG wind turbine systems using dynamic voltage restorers,” IEEE Trans. Energy Conversion, vol. 26, no. 3, pp. 871-882, Sep. 2011.
    [34] L. Wang and C.-T. Hsiung, “Dynamic stability improvement of an integrated grid-connected offshore wind farm and marine-current farm using a STATCOM,” IEEE Trans. Power Systems, vol. 26, no. 2, pp. 690-698, May 2011.
    [35] I. Kamwa, R. Grondin, and Y. Hebert, “Wide-area measurement based stabilizing control of large power systems-a decentralized/hierarchical approach,” IEEE Trans. Power Systems, vol. 16, no. 1, pp. 136-153, Feb. 2001.
    [36] W. Du, H. F. Wang, J. Cao, H. F. Li, and L. Xiao, “Application of the phase compensation method for the design of a DC/AC converter-based stabilizer to damp inter-area power oscillations,” IEEE Trans. Power Systems, vol. 27, no. 3, pp. 1302-1310, Aug. 2012.
    [37] D.-P. Ke and C.-Y. Chung, “An inter-area mode oriented pole-shifting method with coordination of control efforts for robust tuning of power oscillation damping controllers,” IEEE Trans. Power Systems, vol. 27, no. 3, pp. 1422-1432, Aug. 2012.
    [38] A. E. Leon, J. M. Mauricio, A. Gomez-Exposito, and J. A. Solsona, “Hierarchical wide-area control of power systems including wind farms and FACTS for short-term frequency regulation,” IEEE Trans. Power Systems, vol. 27, no. 4, pp. 2084-2092, Nov. 2012.
    [39] A. E. Leon and J. A. Solsona, “Power oscillation damping improvement by adding multiple wind farms to wide-area coordinating controls,” IEEE Trans. Power Systems, vol. 29, no. 3, pp. 1356-1364, May 2014.
    [40] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Drive Systems, 2nd ed., New York: John Wiley & Sons, 2002.
    [41] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa: The Iowa State University Press, Ames, 1977.
    [42] P. Kundur, N. J. Balu, and M. G. Lauby, Power System Stability and Control, New York: McGraw-Hill, 1994.
    [43] S. J. Chapman, Electric Machinery Fundamentals, 4th ed., New York: McGraw-Hill, 2004.
    [44] H. Saadat, Power System Analysis, 2nd ed., New York: McGraw-Hill, 2002.
    [45] S. Lesan and W. Shepherd, “Control of wound-rotor induction motor with rotor impedance variation,” in Proc. IEEE Industry Applications Society Annual Meeting, Toronto, Canada, Oct. 2-8, 1993, pp. 2115-2122.
    [46] 林育弘,風力用感應發電機之負載潮流分析,國立成功大學電機工程學系碩士論文,民國九十四年六月。
    [47] 武光山,採用靜態同步串聯補償器於含有雙饋式感應發電機風場之大型電力系統動態穩定度改善,國立成功大學電機工程學系碩士論文,民國一百年七月。
    [48] 張庭仁,應用彈性交流輸電系統於增強離岸式風場連接至電力系統之穩定度,國立成功大學電機工程學系博士論文,民國一百零二年五月。

    無法下載圖示 校內:2024-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE