| 研究生: |
周俊邦 Chou, Chun-Pang |
|---|---|
| 論文名稱: |
利用POM模式模擬綠島尾流 Applying POM Model for Simulating Green Island Wake |
| 指導教授: |
蕭士俊
Hsiao, Shih-Chun |
| 共同指導教授: |
許泰文
Hsu, Tai-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 綠島尾流 、黑潮 、普林斯頓海洋模式 、季節效應 、風場效應 |
| 外文關鍵詞: | Green Island wake, Kuroshio, POM, seasonal effect, wind effect |
| 相關次數: | 點閱:102 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用二維外模式下的普林斯頓海洋模式(2-D external mode of the Princeton Ocean Model)模擬綠島尾流。藉由資料的輸入進行模式計算,探討計算範圍、地形水深、邊界水位、季節與風場等效應如何影響綠島尾流。輸入模式的資料包含了地形水深、邊界水位和風場。邊界水位是由HYbrid Coordinate Ocean Model (HYCOM)/ Navy Coupled Ocean Data Assimilation (NCODA)所提供,風場資料來源則為Physical Oceanography Distributed Active Archive Center (PO.DAAC)。
本研究以大計算範圍:台東開敞海域(Taitung Open Ocean, TOO)與小計算範圍:綠島海域(Green Island, GI)模擬黑潮流場及綠島尾流。模式結果顯示TOO能夠整體描述蘭嶼及綠島下游的渦街。然而與HYCOM/NCODA資料相比,GI可以更合理地描述綠島下游的渦街。不同的地形水深限制可以探討水深對綠島尾流的效應,由結果可知當水深限制在小於360公尺的情形下黑潮主軸與實際流場特性較為一致。這種水深限制的做法也呼應了黑潮影響區域不及深海的觀測結論,處於深海的水幾乎不會流動。在不同邊界水位輸入的模擬實驗中,發現當邊界水位造成的流速愈大則綠島後的渦街愈明顯。季節效應的模擬中顯現夏季流場較冬季大,並且夏季時綠島後產生的渦街也較冬季來得明顯。於風場效應的模擬結果可發現綠島尾流明顯受到風場影響。風場在夏季的例子中影響明顯,這種特性可能是由於西南季風所引起。
2-D external mode of the Princeton Ocean Model (POM) is applied to study Green Island wake induced by Kuroshio. Subjects such as effects of domain, bathymetry, water surface elevation, seasonal variation and wind field on Green Island wake are investigated. The input data include bathymetry, boundary surface elevations and wind fields. Boundary surface elevations are derived from HYbrid Coordinate Ocean Model (HYCOM)/ Navy Coupled Ocean Data Assimilation (NCODA) and wind fields are derived from Physical Oceanography Distributed Active Archive Center (PO.DAAC).
Numerical studies use Taitung Open Ocean (TOO) domain and Green Island (GI) domain for simulating Green Island wake. The results show that TOO is able to describe the whole vortex streets in the lee of Green Island and Orchid Island, while GI is only capable of describing vortex street behind Green Island with more reasonable flow field compared with HYCOM/NCODA results. Water depth limitation is varied to examine the depth effect on Green Island wake. It is found that the main stream of Kuroshio in the case of 360 m maximum depth limitation is more consistent with realistic flow characteristics. It is reasonable because the influence range of Kuroshio is on the top ocean layer. Model tests with different boundary surface elevation input conditions reveal that the higher the velocity is, the clearer the vortex street is. Seasonal effect in simulations show the velocity field is larger in summer than in winter. The vortex street in the lee of Green Island is stronger in summer but the weak vortex street occurs in winter. The wind effect on Green Island wake is significant. It is clear in the summer cases and it may be caused by the summer southwesterly monsoon.
1. Apel, J.R., 1987. Principles of ocean physics. Academic Press.
2. Asselin, R., 1972. Frequency filter for time integrations. Monthly Weather Review 100 (6), 487-490.
3. Blumberg, A.F., Kantha, L.H., 1985. Open boundary condition for circulation models. Journal of Hydraulic Engineering 111 (2), 237-255.
4. Blumberg, A.F., Mellor, G.L., 1980. A coastal ocean numerical model, Mathematical modelling of estuarine physics. Springer, pp. 203-219.
5. Blumberg, A.F., Mellor, G.L., 1987. A description of a three‐dimensional coastal ocean circulation model. Three-dimensional coastal ocean models, 1-16.
6. Bryan, K., 1969. A numerical method for the study of the circulation of the world ocean. Journal of Computational Physics 4 (3), 347-376.
7. Chang, M.H., Tang, T.Y., Ho, C.R., Chao, S.Y., 2013. Kuroshio‐induced wake in the lee of Green Island off Taiwan. Journal of Geophysical Research: Oceans 118 (3), 1508-1519.
8. Chapman, D.C., 1985. Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. Journal of Physical oceanography 15 (8), 1060-1075.
9. Chen, F., 2010. Kuroshio power plant development plan. Renewable and Sustainable Energy Reviews 14 (9), 2655-2668.
10. Chen, F., 2013. The Kuroshio power plant. Springer.
11. Chou, M. -H. (2015) "Numerical Study of Typhoon Effect on the Green Island Wake." (Master’s Degree) National Cheng Kung University.
12. Fofonoff, N., 1962. Dynamics of ocean currents. The sea 1, 323-395.
13. Heywood, K.J., Barton, E.D., Simpson, J.H., 1990. The effects of flow disturbance by an oceanic island. Journal of Marine Research 48 (1), 55-73.
14. Hsin, Y.C., Wu, C.R., Shaw, P.T., 2008. Spatial and temporal variations of the Kuroshio east of Taiwan, 1982–2005: A numerical study. Journal of Geophysical Research: Oceans 113 (C4).
15. Hsu, T.-W., Liau, J.-M., Liang, S.-J., Tzang, S.-Y., Doong, D.-J., 2015. Assessment of Kuroshio current power test site of Green Island, Taiwan. Renewable Energy 81, 853-863.
16. Huang, S.-J., Ho, C.-R., Lin, S.-L., Liang, S.-J., 2014. Spatial-temporal scales of Green Island wake due to passing of the Kuroshio current. International Journal of Remote Sensing 35 (11-12), 4484-4495.
17. Hunter, J.K., 2006. An introduction to the incompressible euler equations. Notes, Univ. of California, Davis 1.
18. Israeli, M., Orszag, S.A., 1981. Approximation of radiation boundary conditions. Journal of Computational Physics 41 (1), 115-135.
19. Kantha, L.H., Blumberg, A.F., Mellor, G.L., 1990. Computing phase speeds at open boundary. Journal of Hydraulic Engineering 116 (4), 592-597.
20. Liang, W.-D., Tang, T., Yang, Y., Ko, M., Chuang, W.-S., 2003. Upper-ocean currents around Taiwan. Deep Sea Research Part II: Topical Studies in Oceanography 50 (6), 1085-1105.
21. Liu, K.K., Gong, G.C., Shyu, C.Z., Pai, S.C., Wei, C.L., Chao, S.Y., 1992. Response of Kuroshio upwelling to the onset of the northeast monsoon in the sea north of Taiwan: Observations and a numerical simulation. Journal of Geophysical Research: Oceans 97 (C8), 12511-12526.
22. Liau, J. -M., et al. (2011) "Appling POM Ocean Circulation Model to Simulating Ocean Current around Taiwan." (Research Project) Institute of Transportation, Ministry of Transportation and Communications.
23. Lu, Y. -C. (2014) "Study on Kuroshio Current affected by Different Typhoon Tracks." (Master’s Degree), National Cheng Kung University.
24. Madala, R.V., Piacseki, S.A., 1977. A semi-implicit numerical model for baroclinic oceans. Journal of Computational Physics 23 (2), 167-178.
25. Mellor, G., Oey, L., Ezer, T., 1998. Sigma coordinate pressure gradient errors and the seamount problem. Journal of atmospheric and oceanic technology 15 (5), 1122-1131.
26. Mellor, G.L., 1973. Analytic prediction of the properties of stratified planetary surface layers. Journal of the Atmospheric Sciences 30 (6), 1061-1069.
27. Mellor, G.L., 1998. Users guide for a three dimensional, primitive equation, numerical ocean model. Program in Atmospheric and Oceanic Sciences, Princeton University Princeton, NJ 08544-0710.
28. Mellor, G.L., Blumberg, A.F., 1985. Modeling vertical and horizontal diffusivities with the sigma coordinate system. Monthly Weather Review 113 (8), 1379-1383.
29. Mellor, G.L., Ezer, T., Oey, L.-Y., 1994. The pressure gradient conundrum of sigma coordinate ocean models. Journal of atmospheric and oceanic technology 11 (4), 1126-1134.
30. Mellor, G.L., Yamada, T., 1974. A hierarchy of turbulence closure models for planetary boundary layers. Journal of the Atmospheric Sciences 31 (7), 1791-1806.
31. Mellor, G.L., Yamada, T., 1982. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics 20 (4), 851-875.
32. Orlanski, I., 1976. A simple boundary condition for unbounded hyperbolic flows. Journal of Computational Physics 21 (3), 251-269.
33. Palma, E.D., Matano, R.P., 1998. On the implementation of passive open boundary conditions for a general circulation model: The barotropic mode.
34. Palma, E.D., Matano, R.P., 2000. On the implementation of open boundary conditions for a general circulation model: The three‐dimensional case. Journal of Geophysical Research: Oceans 105 (C4), 8605-8627.
35. Shepard, D., 1968. A two-dimensional interpolation function for irregularly-spaced data, Proceedings of the 1968 23rd ACM national conference. ACM, pp. 517-524.
36. Simons, T.J., 1974. Verification of numerical models of Lake Ontario: Part I. Circulation in spring and early summer. Journal of Physical oceanography 4 (4), 507-523.
37. Smagorinsky, J., 1963. General circulation experiments with the primitive equations: I. the basic experiment*. Monthly Weather Review 91 (3), 99-164.
38. Sommerfeld, A., Straus, E.-G., 1949. Partial differential equations in physics.
39. Stommel, H., 1948. The westward intensification of wind‐driven ocean currents. Eos, Transactions American Geophysical Union 29 (2), 202-206.
40. Tang, T., Tai, J., Yang, Y., 2000. The flow pattern north of Taiwan and the migration of the Kuroshio. Continental shelf research 20 (4), 349-371.
41. Tritton, D.J., 2012. Physical fluid dynamics. Springer Science & Business Media.
42. Wu, C.-R., Tang, T., Lin, S., 2005. Intra-seasonal variation in the velocity field of the northeastern South China Sea. Continental shelf research 25 (17), 2075-2083.
43. Young, G.S., Zawislak, J., 2006. An observational study of vortex spacing in island wake vortex streets. Monthly Weather Review 134 (8), 2285-2294.
44. Zdravkovich, M., 1997. Flow around circular cylinders. Fundamentals, vol. 1. Oxford University Press.
45. Zdravkovich, M.M., 2003. Flow around circular cylinders, Applications, vol. 2. Oxford University Press, New York.
46. Zheng, Z.-W., Zheng, Q., 2014. Variability of island-induced ocean vortex trains, in the Kuroshio region southeast of Taiwan Island. Continental shelf research 81, 1-6.
47. HYbrid Coordinate Ocean Model (HYCOM)/ Navy Coupled Ocean Data Assimilation (NCODA), https://hycom.org/
48. Physical Oceanography Distributed Active Archive Center (PO.DAAC), http://podaac.jpl.nasa.gov/